IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp240-248.html
   My bibliography  Save this article

Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia

Author

Listed:
  • Ortega, Santiago
  • Osorio, Andres F.
  • Agudelo, Pablo

Abstract

There are great difficulties in properly evaluating the power present in waves in the Caribbean Sea due to of the scarcity of marine instrumentation and the reduced length of the existing records. This research aimed to design a new methodology for estimating wave power potential in places lacking instrumentation by using reanalysis wind and wave generation models to generate hourly synthetic wave information (maps and wave series), which was later compared and corrected with nearby buoy measurements. Nested runs of the models allowed the results to be downscaled and detailed wave power maps to be created. The best sites for a possible wave farm could then be identified. These maps were built from the propagation of characteristic sea-states of the synthetic series, and were chosen using joint probability, power percentiles and the k-means clustering algorithms. New series were generated in the chosen locations and processed to determine the wave power potential in different time scales. Isla Fuerte, a small non grid-connected island in the Colombian Caribbean, served as a case study for the implementation of the methodology.

Suggested Citation

  • Ortega, Santiago & Osorio, Andres F. & Agudelo, Pablo, 2013. "Estimation of the wave power resource in the Caribbean Sea in areas with scarce instrumentation. Case study: Isla Fuerte, Colombia," Renewable Energy, Elsevier, vol. 57(C), pages 240-248.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:240-248
    DOI: 10.1016/j.renene.2012.11.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112007847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.11.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iglesias, G. & Carballo, R., 2009. "Wave energy potential along the Death Coast (Spain)," Energy, Elsevier, vol. 34(11), pages 1963-1975.
    2. Bernhoff, Hans & Sjöstedt, Elisabeth & Leijon, Mats, 2006. "Wave energy resources in sheltered sea areas: A case study of the Baltic Sea," Renewable Energy, Elsevier, vol. 31(13), pages 2164-2170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Wen-Ray & Chen, Hongey & Chen, Wei-Bo & Chang, Chih-Hsin & Lin, Lee-Yaw & Jang, Jiun-Huei & Yu, Yi-Chiang, 2018. "Numerical investigation of wave energy resources and hotspots in the surrounding waters of Taiwan," Renewable Energy, Elsevier, vol. 118(C), pages 814-824.
    2. Osorio, A.F. & Ortega, Santiago & Arango-Aramburo, Santiago, 2016. "Assessment of the marine power potential in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 966-977.
    3. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    4. Appendini, Christian M. & Urbano-Latorre, Claudia P. & Figueroa, Bernardo & Dagua-Paz, Claudia J. & Torres-Freyermuth, Alec & Salles, Paulo, 2015. "Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information," Applied Energy, Elsevier, vol. 137(C), pages 375-384.
    5. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    6. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    7. Milad Shadman & Mateo Roldan-Carvajal & Fabian G. Pierart & Pablo Alejandro Haim & Rodrigo Alonso & Corbiniano Silva & Andrés F. Osorio & Nathalie Almonacid & Griselda Carreras & Mojtaba Maali Amiri &, 2023. "A Review of Offshore Renewable Energy in South America: Current Status and Future Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-34, January.
    8. Montoya Ramírez, Rubén D. & Cuervo, Felipe Isaza & Monsalve Rico, César Antonio, 2016. "Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in Colombia: A case study," Renewable Energy, Elsevier, vol. 99(C), pages 136-147.
    9. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    10. Sierra, J.P. & Casas-Prat, M. & Campins, E., 2017. "Impact of climate change on wave energy resource: The case of Menorca (Spain)," Renewable Energy, Elsevier, vol. 101(C), pages 275-285.
    11. Orejarena-Rondón, Andrés F. & Restrepo, Juan C. & Correa-Metrio, Alex & Orfila, Alejandro, 2022. "Wave energy flux in the Caribbean Sea: Trends and variability," Renewable Energy, Elsevier, vol. 181(C), pages 616-629.
    12. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    13. Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
    14. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    15. Hung-Ju Shih & Chih-Hsin Chang & Wei-Bo Chen & Lee-Yaw Lin, 2018. "Identifying the Optimal Offshore Areas for Wave Energy Converter Deployments in Taiwanese Waters Based on 12-Year Model Hindcasts," Energies, MDPI, vol. 11(3), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    2. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2014. "Assessment of wave energy in the Canary Islands," Renewable Energy, Elsevier, vol. 68(C), pages 774-784.
    3. Akpınar, Adem & Kömürcü, Murat İhsan, 2012. "Wave energy potential along the south-east coasts of the Black Sea," Energy, Elsevier, vol. 42(1), pages 289-302.
    4. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    5. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    6. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    9. Osorio, A.F. & Ortega, Santiago & Arango-Aramburo, Santiago, 2016. "Assessment of the marine power potential in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 966-977.
    10. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    11. Zanous, Sina Pasha & Shafaghat, Rouzbeh & Alamian, Rezvan & Shadloo, Mostafa Safdari & Khosravi, Mohammad, 2019. "Feasibility study of wave energy harvesting along the southern coast and islands of Iran," Renewable Energy, Elsevier, vol. 135(C), pages 502-514.
    12. Akpınar, Adem & Kömürcü, Murat İhsan, 2013. "Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data," Applied Energy, Elsevier, vol. 101(C), pages 502-512.
    13. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    14. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    15. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    16. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    17. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    18. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    19. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    20. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:240-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.