IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp780-785.html
   My bibliography  Save this article

The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations

Author

Listed:
  • Jafarian, M.
  • Ranjbar, A.M.

Abstract

Introduction of large amounts of new wind generation can affect the small signal stability of power systems with three mechanisms: displacing synchronous generators (SGs); reducing SGs power generation; and the dynamics of wind farms (WFs) interacting with the electromechanical mode of SGs. In this paper a novel approach is developed to investigate the impact of the latter mechanism on existing power systems oscillations. In this approach, the dynamic behavior of grid connected WFs is studied independent of the dynamic behavior of system SGs. This approach helps to identify the conditions in which the dynamics of WFs may interact with the electromechanical mode of SGs. Also it helps to foresee the impact of these probable interactions on the frequency and damping of system oscillations. By using this approach in a test system, it was shown that under some circumstances these dynamic interactions considerably decrease the damping of system oscillations but they barely change the frequency of system oscillations. The frequency of system oscillation and the operating point of WF are the two major parameters determine the severity of the decrease in oscillation damping. Comparison of the SG electromechanical eigenvalues calculated before and after the introduction of the WF in the test system, confirmed the prospects of the proposed approach.

Suggested Citation

  • Jafarian, M. & Ranjbar, A.M., 2013. "The impact of wind farms with doubly fed induction generators on power system electromechanical oscillations," Renewable Energy, Elsevier, vol. 50(C), pages 780-785.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:780-785
    DOI: 10.1016/j.renene.2012.08.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernández, Luis M. & Jurado, Francisco & Saenz, José Ramón, 2008. "Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines," Renewable Energy, Elsevier, vol. 33(1), pages 129-140.
    2. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    3. Yingcheng, Xue & Nengling, Tai, 2011. "Review of contribution to frequency control through variable speed wind turbine," Renewable Energy, Elsevier, vol. 36(6), pages 1671-1677.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasemi, Hosein & Gharehpetian, G.B. & Nabavi-Niaki, Seyed Ali & Aghaei, Jamshid, 2013. "Overview of subsynchronous resonance analysis and control in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 234-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    2. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Mohammad Kazem Bakhshizadeh & Benjamin Vilmann & Łukasz Kocewiak, 2022. "Modal Aggregation Technique to Check the Accuracy of the Model Reduction of Array Cable Systems in Offshore Wind Farms," Energies, MDPI, vol. 15(21), pages 1-19, October.
    4. Domínguez-García, José Luis & Gomis-Bellmunt, Oriol & Bianchi, Fernando D. & Sumper, Andreas, 2012. "Power oscillation damping supported by wind power: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4994-5006.
    5. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    6. Fernandez, L.M. & Garcia, C.A. & Jurado, F., 2008. "Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation," Energy, Elsevier, vol. 33(9), pages 1438-1452.
    7. Jian Zhang & Mingjian Cui & Yigang He, 2020. "Parameters Identification of Equivalent Model of Permanent Magnet Synchronous Generator (PMSG) Wind Farm Based on Analysis of Trajectory Sensitivity," Energies, MDPI, vol. 13(18), pages 1-18, September.
    8. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    9. Ouhrouche, Mohand, 2009. "Transient analysis of a grid connected wind driven induction generator using a real-time simulation platform," Renewable Energy, Elsevier, vol. 34(3), pages 801-806.
    10. Zou, Jianxiao & Peng, Chao & Yan, Yan & Zheng, Hong & Li, Yan, 2014. "A survey of dynamic equivalent modeling for wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 956-963.
    11. Kamel, Rashad M., 2016. "Standalone micro grid power quality improvement using inertia and power reserves of the wind generation systems," Renewable Energy, Elsevier, vol. 97(C), pages 572-584.
    12. Yan, Ruifeng & Saha, Tapan Kumar & Modi, Nilesh & Masood, Nahid-Al & Mosadeghy, Mehdi, 2015. "The combined effects of high penetration of wind and PV on power system frequency response," Applied Energy, Elsevier, vol. 145(C), pages 320-330.
    13. Naemi, Mostafa & Brear, Michael J., 2020. "A hierarchical, physical and data-driven approach to wind farm modelling," Renewable Energy, Elsevier, vol. 162(C), pages 1195-1207.
    14. Ghasemi, Hosein & Gharehpetian, G.B. & Nabavi-Niaki, Seyed Ali & Aghaei, Jamshid, 2013. "Overview of subsynchronous resonance analysis and control in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 234-243.
    15. Li, Jianwei & Xiong, Rui & Yang, Qingqing & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system," Applied Energy, Elsevier, vol. 201(C), pages 257-269.
    16. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    17. Zhang, Jian & Cui, Mingjian & He, Yigang, 2020. "Robustness and adaptability analysis for equivalent model of doubly fed induction generator wind farm using measured data," Applied Energy, Elsevier, vol. 261(C).
    18. Nour Khlaifat & Ali Altaee & John Zhou & Yuhan Huang & Ali Braytee, 2020. "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, MDPI, vol. 13(9), pages 1-26, May.
    19. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    20. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:780-785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.