IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp326-332.html
   My bibliography  Save this article

Human and animal power – The forgotten renewables

Author

Listed:
  • Fuller, R.J.
  • Aye, Lu

Abstract

Globally, there is still widespread dependence on traditional forms of energy, and human and animal power still contribute a significant proportion of the energy used in the rural areas of developing countries. After biomass, they are the most important energy sources for their populations. On a global scale, the energy contributed by human and animal power is estimated to be twice that of wind power and 13% of hydro, the largest single contributor of the renewable energy sources. This paper therefore argues that human and animal power should be included in the ‘family’ of renewable energy sources of solar, wind, hydro and biomass. There are numerous opportunities to improve the efficiency (and output) of hand, foot and animal-powered equipment. Improvements in these technologies will help to reduce the drudgery and hardship of everyday life of those who do not have access to modern forms of energy.

Suggested Citation

  • Fuller, R.J. & Aye, Lu, 2012. "Human and animal power – The forgotten renewables," Renewable Energy, Elsevier, vol. 48(C), pages 326-332.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:326-332
    DOI: 10.1016/j.renene.2012.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karekezi, Stephen & Kithyoma, Waeni, 2002. "Renewable energy strategies for rural Africa: is a PV-led renewable energy strategy the right approach for providing modern energy to the rural poor of sub-Saharan Africa?," Energy Policy, Elsevier, vol. 30(11-12), pages 1071-1086, September.
    2. Alam, M.S & Roychowdhury, A & Waliuzzaman, K.M & Huq, A.M.Z, 1999. "Energy flow in the family farming system of a traditional village in Bangladesh," Energy, Elsevier, vol. 24(6), pages 537-545.
    3. Nkakini, S.O. & Ayotamuno, M.J. & Maeba, G.P.D. & Ogaji, S.O.T. & Probert, S.D., 2007. "Manually-powered continuous-flow maize-sheller," Applied Energy, Elsevier, vol. 84(12), pages 1175-1186, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    2. Adenle, Ademola A., 2020. "Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals," Energy Policy, Elsevier, vol. 137(C).
    3. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    4. Otte, Pia Piroschka, 2014. "Solar cooking in Mozambique—an investigation of end-user׳s needs for the design of solar cookers," Energy Policy, Elsevier, vol. 74(C), pages 366-375.
    5. Muhammad Imran & Azlan Zahid & Salma Mouneer & Orhan Özçatalbaş & Shamsheer Ul Haq & Pomi Shahbaz & Muhammad Muzammil & Muhammad Ramiz Murtaza, 2022. "Relationship between Household Dynamics, Biomass Consumption, and Carbon Emissions in Pakistan," Sustainability, MDPI, vol. 14(11), pages 1-16, May.
    6. Jarosław Kulpa & Piotr Olczak & Tomasz Surma & Dominika Matuszewska, 2021. "Comparison of Support Programs for the Development of Photovoltaics in Poland: My Electricity Program and the RES Auction System," Energies, MDPI, vol. 15(1), pages 1-17, December.
    7. Łukasz Kuźmiński & Arkadiusz Halama & Michał Nadolny & Joanna Dynowska, 2023. "Economic Instruments and the Vision of Prosumer Energy in Poland. Analysis of the Potential Impacts of the “My Electricity” Program," Energies, MDPI, vol. 16(4), pages 1-12, February.
    8. Amollo Ambole & Kweku Koranteng & Peris Njoroge & Douglas Logedi Luhangala, 2021. "A Review of Energy Communities in Sub-Saharan Africa as a Transition Pathway to Energy Democracy," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    9. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    10. Carlos Scheel & Eduardo Aguiñaga & Bernardo Bello, 2020. "Decoupling Economic Development from the Consumption of Finite Resources Using Circular Economy. A Model for Developing Countries," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    11. Pode, Ramchandra, 2013. "Financing LED solar home systems in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 596-629.
    12. Hassen, Sied & Gebrehiwot, Tagel & Arega, Tiruwork, 2018. "Determinants of enterprises use of energy efficient technologies: Evidence from urban Ethiopia," Energy Policy, Elsevier, vol. 119(C), pages 388-395.
    13. Kazungu Arnold T & Kauti Matheaus K & Gikuma-Njuru Peter, 2019. "Cost Benefit Analysis of Different Energy Sources used in Public Secondary Schools in Mtito-Andei Division, Makueni County, Kenya," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 19(4), pages 95-104, May.
    14. Haselip, James & Desgain, Denis & Mackenzie, Gordon, 2014. "Financing energy SMEs in Ghana and Senegal: Outcomes, barriers and prospects," Energy Policy, Elsevier, vol. 65(C), pages 369-376.
    15. Gabra, Samuel & Miles, John & Scott, Stuart A., 2019. "Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa," Renewable Energy, Elsevier, vol. 143(C), pages 1928-1938.
    16. McHenry, M.P. & Doepel, D. & Onyango, B.O. & Opara, U.L., 2014. "Small-scale portable photovoltaic-battery-LED systems with submersible LED units to replace kerosene-based artisanal fishing lamps for Sub-Saharan African lakes," Renewable Energy, Elsevier, vol. 62(C), pages 276-284.
    17. Amankwah-Amoah, Joseph, 2015. "Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging," MPRA Paper 88627, University Library of Munich, Germany.
    18. Friebe, Christian A. & Flotow, Paschen von & Täube, Florian A., 2013. "Exploring the link between products and services in low-income markets—Evidence from solar home systems," Energy Policy, Elsevier, vol. 52(C), pages 760-769.
    19. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    20. Kuno, Amanuel Kachiko & Begna, Nafbek & Mebratu, Fisaha, 2023. "A feasibility analysis of PV-based off-grid rural electrification for a pastoral settlement in Ethiopia," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:326-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.