IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p216-222.html
   My bibliography  Save this article

Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae

Author

Listed:
  • Lee, Wen-Shiang
  • Chen, I-Chu
  • Chang, Cheng-Hsiung
  • Yang, Shang-Shyng

Abstract

To investigate the bioethanol production from sweet potato, the saccharification and fermentation conditions of co-immobilization of saccharolytic molds (Aspergillus oryzae and Monascus purpureus) with Saccharomyces cerevisiae were analyzed. The immobilized yeast cells showed that at 10% glucose YPD (yeast extract peptone dextrose) the maximum fermentation rate was 80.23%. Viability of yeasts cells were 95.70% at a final ethanol concentration of 6%. Immobilization enhanced the ethanol tolerance of yeast cells. In co-immobilization of S. cerevisiae with A. oryzae or M. purpureus, the optimal hardening time of gel beads was between 15 and 60 min. Bioethanol production was 3.05–3.17% (v v−1) and the YE/s (yield of ethanol production/starch consumption) was 0.31–0.37 at pH 4, 30 °C and 150 rpm during 13 days fermentation period. Co-immobilization of S. cerevisiae with a mixed cultures of A. oryzae and M. purpureus at a ratio of 2:1, the bioethanol production was 3.84% (v v−1), and the YE/s was 0.39 for a 11 days incubation. However a ratio of A. oryzae and M. purpureus at 1:2 resulted a bioethanol production rate of 4.08% (v v−1), and a YE/s of 0.41 after 9 days of fermentation.

Suggested Citation

  • Lee, Wen-Shiang & Chen, I-Chu & Chang, Cheng-Hsiung & Yang, Shang-Shyng, 2012. "Bioethanol production from sweet potato by co-immobilization of saccharolytic molds and Saccharomyces cerevisiae," Renewable Energy, Elsevier, vol. 39(1), pages 216-222.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:216-222
    DOI: 10.1016/j.renene.2011.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    2. Tsai, Wen-Tien & Lan, Haw-Farn & Lin, De-Tsai, 2008. "An analysis of bioethanol utilized as renewable energy in the transportation sector in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1364-1382, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mishra, Abhishek & Sharma, Ajay K. & Sharma, Sumit & Bagai, Rashmi & Mathur, Anshu S. & Gupta, Ravi P. & Tuli, Deepak K., 2016. "Lignocellulosic ethanol production employing immobilized Saccharomyces cerevisiae in packed bed reactor," Renewable Energy, Elsevier, vol. 98(C), pages 57-63.
    2. Paola Sakai & Stavros Afionis & Nicola Favretto & Lindsay C. Stringer & Caroline Ward & Marco Sakai & Pedro Henrique Weirich Neto & Carlos Hugo Rocha & Jaime Alberti Gomes & Nátali Maidl de Souza & No, 2020. "Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil," Sustainability, MDPI, vol. 12(5), pages 1-22, March.
    3. Yuelei Yang & Kevin Boots & Dan Zhang, 2012. "A Sustainable Ethanol Distillation System," Sustainability, MDPI, vol. 4(1), pages 1-14, January.
    4. Li, Jun & Zhao, Renyong & Xu, Youjie & Wu, Xiaorong & Bean, Scott R. & Wang, Donghai, 2022. "Fuel ethanol production from starchy grain and other crops: An overview on feedstocks, affecting factors, and technical advances," Renewable Energy, Elsevier, vol. 188(C), pages 223-239.
    5. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    6. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    2. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    5. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    6. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
    7. Larisa Vazhenina & Elena Magaril & Igor Mayburov, 2022. "Resource Conservation as the Main Factor in Increasing the Resource Efficiency of Russian Gas Companies," Resources, MDPI, vol. 11(12), pages 1-14, December.
    8. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    9. Alexander Franz & Julia Rieck & Jürgen Zimmermann, 2019. "Fix-and-optimize procedures for solving the long-term unit commitment problem with pumped storages," Annals of Operations Research, Springer, vol. 274(1), pages 241-265, March.
    10. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
    12. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    13. Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
    14. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Vladimir Zybatov, 2018. "Strategic Planning of Energy-Efficient Development of a Region of the Russian Federation," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 941-954.
    16. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    17. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    18. Patlitzianas, Konstantinos D. & Psarras, John, 2007. "Formulating a modern energy companies' environment in the EU accession member states through a decision support methodology," Energy Policy, Elsevier, vol. 35(4), pages 2231-2238, April.
    19. Fadavi, Raheleh & Samavatean, Naiemeh & Keyhani, Alireza & Saied, Seyyed, 2012. "An Analysis of Improving Energy use with Data Envelopment Analysis in Apple Orchard," Asian Journal of Agriculture and Rural Development, Asian Economic and Social Society (AESS), vol. 2(02), pages 1-11, June.
    20. McCallum, Peter & Jenkins, David P. & Peacock, Andrew D. & Patidar, Sandhya & Andoni, Merlinda & Flynn, David & Robu, Valentin, 2019. "A multi-sectoral approach to modelling community energy demand of the built environment," Energy Policy, Elsevier, vol. 132(C), pages 865-875.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:216-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.