IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1614-1620.html
   My bibliography  Save this article

A novel application of a Fresnel lens for a solar stove and solar heating

Author

Listed:
  • Valmiki, M.M.
  • Li, Peiwen
  • Heyer, Javier
  • Morgan, Matthew
  • Albinali, Abdulla
  • Alhamidi, Kamal
  • Wagoner, Jeremy

Abstract

This paper presents a novel design and the prototyped solar cooking stove which uses a large Fresnel lens for the concentration of sunlight. The technology demonstrates high safety and efficiency of solar cooking and heating using Fresnel lenses which are low cost and available from off-the-shelf. The stove has a fixed heat-receiving area located at the focal point of the lens. The sunlight tracking system rotates the Fresnel lens about its focal point in both zenith and azimuth angles. The tracking is accomplished through a revolving motion of two rotation arms that hold the lens and a horizontal rotation of a platform that the lens system stands on. The rotation of the arms tracks the sunlight in zenith plane, while the rotation of the platform tracks in the azimuth plane. Since the solar tracking allows the Fresnel lens to concentrate sunlight to a fixed small heat-receiving area, relatively low heat loss and high energy efficiency is made possible. The heat is used to maintain a stovetop surface at temperatures around as high as 300 °C, which is practical for cooking applications in a very safe, user-friendly, and convenient manner. The system also demonstrates the possibility of transferring heat using a working fluid for indoor heating and cooking. Wider applications using the system for solar thermal collection and utilization are also undergoing development.

Suggested Citation

  • Valmiki, M.M. & Li, Peiwen & Heyer, Javier & Morgan, Matthew & Albinali, Abdulla & Alhamidi, Kamal & Wagoner, Jeremy, 2011. "A novel application of a Fresnel lens for a solar stove and solar heating," Renewable Energy, Elsevier, vol. 36(5), pages 1614-1620.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1614-1620
    DOI: 10.1016/j.renene.2010.10.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811000488X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.10.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Hai & Huang, Jin & Song, Mengjie & Yan, Jian, 2019. "Effects of receiver parameters on the optical performance of a fixed-focus Fresnel lens solar concentrator/cavity receiver system in solar cooker," Applied Energy, Elsevier, vol. 237(C), pages 70-82.
    2. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Navendu Misra & Abhishek Anand & Saurabh Pandey & Karunesh Kant & Amritanshu Shukla & Atul Sharma, 2023. "Box-Type Solar Cookers: An Overview of Technological Advancement, Energy, Environmental, and Economic Benefits," Energies, MDPI, vol. 16(4), pages 1-32, February.
    4. Ma, Xinglong & Zheng, Hongfei & Liu, Shuli, 2019. "Optimization on a cylindrical Fresnel lens and its validation in a medium-temperature solar steam generation system," Renewable Energy, Elsevier, vol. 134(C), pages 1332-1343.
    5. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.
    6. Selvaraj Balachandran & Jose Swaminathan, 2022. "Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems," Energies, MDPI, vol. 15(22), pages 1-32, November.
    7. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    8. Niu, Hewen & He, Yuanqing & Desideri, Umberto & Zhang, Peidong & Qin, Hongyi & Wang, Shijin, 2014. "Rural household energy consumption and its implications for eco-environments in NW China: A case study," Renewable Energy, Elsevier, vol. 65(C), pages 137-145.
    9. Hai Wang & Jin Huang & Mengjie Song & Yanxin Hu & Yunfeng Wang & Zijian Lu, 2018. "Simulation and Experimental Study on the Optical Performance of a Fixed-Focus Fresnel Lens Solar Concentrator Using Polar-Axis Tracking," Energies, MDPI, vol. 11(4), pages 1-16, April.
    10. Hai Wang, 2023. "Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    11. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1614-1620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.