IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i5p1343-1351.html
   My bibliography  Save this article

Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

Author

Listed:
  • Edmonds, Ian
  • Smith, Geoff

Abstract

A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO2 which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO2 emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant – the “business as usual” case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects.

Suggested Citation

  • Edmonds, Ian & Smith, Geoff, 2011. "Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming," Renewable Energy, Elsevier, vol. 36(5), pages 1343-1351.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1343-1351
    DOI: 10.1016/j.renene.2010.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110005033
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard A. Betts, 2000. "Offset of the potential carbon sink from boreal forestation by decreases in surface albedo," Nature, Nature, vol. 408(6809), pages 187-190, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    2. Jiang, Joe-Air & Wang, Jen-Cheng & Kuo, Kun-Chang & Su, Yu-Li & Shieh, Jyh-Cherng & Chou, Jui-Jen, 2012. "Analysis of the junction temperature and thermal characteristics of photovoltaic modules under various operation conditions," Energy, Elsevier, vol. 44(1), pages 292-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan Chen & Yihao Wang & Ruisi Chen & Xiuya Ni & Jixin Cao, 2022. "Effects of Forest Type on Nutrient Fluxes in Throughfall, Stemflow, and Litter Leachate within Acid-Polluted Locations in Southwest China," IJERPH, MDPI, vol. 19(5), pages 1-15, February.
    2. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Anatoly Shvidenko & Mike Apps, 2006. "The International Boreal Forest Research Association: Understanding Boreal Forests and Forestry in a Changing World," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(1), pages 5-32, January.
    4. Robert Hamwey, 2007. "Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 419-439, May.
    5. Jean-Baptiste, Philippe & Ducroux, Rene, 2003. "Energy policy and climate change," Energy Policy, Elsevier, vol. 31(2), pages 155-166, January.
    6. He, Hongxing & Jansson, Per-Erik & Svensson, Magnus & Meyer, Astrid & Klemedtsson, Leif & Kasimir, Åsa, 2016. "Factors controlling Nitrous Oxide emission from a spruce forest ecosystem on drained organic soil, derived using the CoupModel," Ecological Modelling, Elsevier, vol. 321(C), pages 46-63.
    7. Gustavsson, Leif & Haus, Sylvia & Lundblad, Mattias & Lundström, Anders & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le & Wikberg, Per-Erik, 2017. "Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 612-624.
    8. Sohngen, Brent & Favero, Alice & Jin, Yufang & Huang, Yuhan, 2018. "Global cost estimates of forest climate mitigation with albedo: A new policy approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274307, Agricultural and Applied Economics Association.
    9. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Elizabeth Kopits & Alex L. Marten & Ann Wolverton, 2013. "Moving Forward with Incorporating "Catastrophic" Climate Change into Policy Analysis," NCEE Working Paper Series 201301, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Jan 2013.
    11. Glenn Hodgkins, 2013. "The importance of record length in estimating the magnitude of climatic changes: an example using 175 years of lake ice-out dates in New England," Climatic Change, Springer, vol. 119(3), pages 705-718, August.
    12. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    13. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    14. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Wen Huo & Fan Yang & Xiefei Zhi & Ali Mamtimin & Qing He & Honglin Pan & Cong Wen & Yu Wang & Ye Wu & Xinghua Yang & Chenglong Zhou & Meiqi Song & Lu Meng & Minzhong Wang, 2022. "A Comparative Study on the Difference in Meteorological Monitoring between Constructed Green Land and Natural Sandy Land," Sustainability, MDPI, vol. 14(3), pages 1-20, January.
    16. G. Cornelis van Kooten & Grant Hauer, 2001. "Global Climate Change: Canadian Policy and the Role of Terrestrial Ecosystems," Canadian Public Policy, University of Toronto Press, vol. 27(3), pages 267-278, September.
    17. Nicolas Mansuy & Sylvie Gauthier & Yves Bergeron, 2013. "Afforestation opportunities when stand productivity is driven by a high risk of natural disturbance: a review of the open lichen woodland in the eastern boreal forest of Canada," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(2), pages 245-264, February.
    18. Moriarty, Patrick & Honnery, Damon, 2011. "Is there an optimum level for renewable energy?," Energy Policy, Elsevier, vol. 39(5), pages 2748-2753, May.
    19. Ronny Rotbarth & Egbert H. Nes & Marten Scheffer & Jane Uhd Jepsen & Ole Petter Laksforsmo Vindstad & Chi Xu & Milena Holmgren, 2023. "Northern expansion is not compensating for southern declines in North American boreal forests," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Martin, Manuel Pascal & Cordier, Stéphane & Balesdent, Jérôme & Arrouays, Dominique, 2007. "Periodic solutions for soil carbon dynamics equilibriums with time-varying forcing variables," Ecological Modelling, Elsevier, vol. 204(3), pages 523-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:5:p:1343-1351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.