IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i3p1003-1007.html
   My bibliography  Save this article

Fast biodiesel production from beef tallow with radio frequency heating

Author

Listed:
  • Liu, Shaoyang
  • Wang, Yifen
  • Oh, Jun-Hyun
  • Herring, Josh L.

Abstract

Efficient biodiesel production from beef tallow was achieved with radio frequency (RF) heating. A conversion rate of 96.3 ± 0.5% was obtained with a NaOH concentration of 0.6% (based on tallow), an RF heating for 5 min, and a methanol/tallow molar ratio of 9:1. Response surface methodology was employed to evaluate the influence of NaOH dose, RF heating time, and methanol/tallow ratio. The alkaline concentration showed the largest positive impact on the conversion rate. Similar fast conversion from canola oil to biodiesel was achieved in our previous work, indicating that RF heating, as an accelerating technique for biodiesel production, had a large applying area. Viscosities of biodiesel products from beef tallow and canola oil were measured as 5.23 ± 0.01 and 4.86 ± 0.01 mm2 s−1, respectively, both meeting the specification in ASTM D6751 (1.9–6.0 mm2 s−1).

Suggested Citation

  • Liu, Shaoyang & Wang, Yifen & Oh, Jun-Hyun & Herring, Josh L., 2011. "Fast biodiesel production from beef tallow with radio frequency heating," Renewable Energy, Elsevier, vol. 36(3), pages 1003-1007.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1003-1007
    DOI: 10.1016/j.renene.2010.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110004271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chakraborty, R. & Sahu, H., 2014. "Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network," Applied Energy, Elsevier, vol. 114(C), pages 827-836.
    2. Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
    3. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    4. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    5. Nayak, Sheetal N. & Bhasin, Chandra Prakash & Nayak, Milap G., 2019. "A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems," Renewable Energy, Elsevier, vol. 143(C), pages 1366-1387.
    6. Mukhtar, Ahmad & Saqib, Sidra & Mubashir, Muhammad & Ullah, Sami & Inayat, Abrar & Mahmood, Abid & Ibrahim, Muhammad & Show, Pau Loke, 2021. "Mitigation of CO2 emissions by transforming to biofuels: Optimization of biofuels production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    8. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    9. Ma, Yichao & Wang, Pixiang & Wang, Yi & Liu, Shaoyang & Wang, Qichen & Wang, Yifen, 2020. "Fermentable sugar production from wet microalgae residual after biodiesel production assisted by radio frequency heating," Renewable Energy, Elsevier, vol. 155(C), pages 827-836.
    10. Shahir, V.K. & Jawahar, C.P. & Suresh, P.R., 2015. "Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 686-697.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
    2. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    3. Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
    6. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    7. Samniang, Amonrat & Tipachan, Chuenkhuan & Kajorncheappun-ngam, Somjai, 2014. "Comparison of biodiesel production from crude Jatropha oil and Krating oil by supercritical methanol transesterification," Renewable Energy, Elsevier, vol. 68(C), pages 351-355.
    8. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    9. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst," Applied Energy, Elsevier, vol. 105(C), pages 380-388.
    10. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Mekhilef, S., 2011. "A review on prospect of Jatropha curcas for biodiesel in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3733-3756.
    11. Tan, Kok Tat & Lee, Keat Teong, 2011. "A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2452-2456, June.
    12. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    13. Sánchez, Marcos & Navas, Marisa & Ruggera, José F. & Casella, Mónica L. & Aracil, José & Martínez, Mercedes, 2014. "Biodiesel production optimization using γAl2O3 based catalysts," Energy, Elsevier, vol. 73(C), pages 661-669.
    14. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    15. Senthil Kumar, T. & Senthil Kumar, P. & Annamalai, K., 2015. "Experimental study on the performance and emission measures of direct injection diesel engine with Kapok methyl ester and its blends," Renewable Energy, Elsevier, vol. 74(C), pages 903-909.
    16. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    17. Hazar, Hanbey, 2010. "Cotton methyl ester usage in a diesel engine equipped with insulated combustion chamber," Applied Energy, Elsevier, vol. 87(1), pages 134-140, January.
    18. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    19. Moraes, Paola S. & Igansi, Andrei V. & Cadaval, Tito R.S. & Pinto, Luiz A.A., 2020. "Biodiesel produced from crude, degummed, neutralized and bleached oils of Nile tilapia waste: Production efficiency, physical-chemical quality and economic viability," Renewable Energy, Elsevier, vol. 161(C), pages 110-119.
    20. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1003-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.