IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i2p866-871.html
   My bibliography  Save this article

A cost and performance comparison of LRTM and VI for the manufacture of large scale wind turbine blades

Author

Listed:
  • Hutchinson, J.R.
  • Schubel, P.J.
  • Warrior, N.A.

Abstract

Light resin transfer moulding (LRTM) has been developed as an alternative to vacuum infusion (VI) but a direct comparison between the two processes is needed to quantify any advantages. This paper uses a technical cost model and an empirical study to show the potential financial and performance benefits of LRTM for manufacture of a generic 40 m wind turbine blade shell. The use of LRTM when compared to VI demonstrated a possible 3% cost saving, improved dimensional stability (5.5%), and reductions in resin wastage (3%) and infusion time (25%). A decrease in internal void formation (0.9%) resulted in an increase in mechanical performance (<4%) for LRTM moulded parts.

Suggested Citation

  • Hutchinson, J.R. & Schubel, P.J. & Warrior, N.A., 2011. "A cost and performance comparison of LRTM and VI for the manufacture of large scale wind turbine blades," Renewable Energy, Elsevier, vol. 36(2), pages 866-871.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:2:p:866-871
    DOI: 10.1016/j.renene.2010.07.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.07.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schubel, P.J., 2010. "Technical cost modelling for a generic 45-m wind turbine blade producedby vacuum infusion (VI)," Renewable Energy, Elsevier, vol. 35(1), pages 183-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    2. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    3. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    4. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathijs Peeters & Gilberto Santo & Joris Degroote & Wim Van Paepegem, 2017. "The Concept of Segmented Wind Turbine Blades: A Review," Energies, MDPI, vol. 10(8), pages 1-20, July.
    2. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    3. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.
    4. Johnson, Stephen B. & Chetan, Mayank & Griffith, D. Todd & Sherwood, James, 2023. "A design-driven wind blade manufacturing model to identify opportunities to reduce wind blade costs," Renewable Energy, Elsevier, vol. 215(C).
    5. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.
    6. Zhao, Zhen-Yu & Li, Zhi-Wei & Xia, Bo, 2014. "The impact of the CDM (clean development mechanism) on the cost price of wind power electricity: A China study," Energy, Elsevier, vol. 69(C), pages 179-185.
    7. Murray, Robynne E. & Jenne, Scott & Snowberg, David & Berry, Derek & Cousins, Dylan, 2019. "Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade," Renewable Energy, Elsevier, vol. 131(C), pages 111-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:2:p:866-871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.