IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p183-189.html
   My bibliography  Save this article

Technical cost modelling for a generic 45-m wind turbine blade producedby vacuum infusion (VI)

Author

Listed:
  • Schubel, P.J.

Abstract

A detailed technical cost analysis has been conducted on a generic 45-m wind turbine blade manufactured using the vacuum infusion (VI) process, in order to isolate areas of significant cost savings. The analysis has focused on a high labour cost environment such as the UK and investigates the influence of varying labour costs, programme life, component area, deposition time, cure time and reinforcement price with respect to production volume. A split of the cost centres showed the dominance of material and labour costs at approximately 51% and 41%, respectively. Due to the dominance of materials, it was shown that fluctuations in reinforcement costs can easily increase or decrease the cost of a turbine blade by up to 14%. Similarly, improving material deposition time by 2h can save approximately 5% on the total blade cost. However, saving 4h on the cure cycle only has the potential to provide a 2% cost saving.

Suggested Citation

  • Schubel, P.J., 2010. "Technical cost modelling for a generic 45-m wind turbine blade producedby vacuum infusion (VI)," Renewable Energy, Elsevier, vol. 35(1), pages 183-189.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:183-189
    DOI: 10.1016/j.renene.2009.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109000895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Zhen-Yu & Li, Zhi-Wei & Xia, Bo, 2014. "The impact of the CDM (clean development mechanism) on the cost price of wind power electricity: A China study," Energy, Elsevier, vol. 69(C), pages 179-185.
    2. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    3. Johnson, Stephen B. & Chetan, Mayank & Griffith, D. Todd & Sherwood, James, 2023. "A design-driven wind blade manufacturing model to identify opportunities to reduce wind blade costs," Renewable Energy, Elsevier, vol. 215(C).
    4. Murray, Robynne E. & Jenne, Scott & Snowberg, David & Berry, Derek & Cousins, Dylan, 2019. "Techno-economic analysis of a megawatt-scale thermoplastic resin wind turbine blade," Renewable Energy, Elsevier, vol. 131(C), pages 111-119.
    5. Zhao, Zhen-yu & Ling, Wen-jun & Zillante, George & Zuo, Jian, 2012. "Comparative assessment of performance of foreign and local wind turbine manufacturers in China," Renewable Energy, Elsevier, vol. 39(1), pages 424-432.
    6. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.
    7. Mathijs Peeters & Gilberto Santo & Joris Degroote & Wim Van Paepegem, 2017. "The Concept of Segmented Wind Turbine Blades: A Review," Energies, MDPI, vol. 10(8), pages 1-20, July.
    8. Hutchinson, J.R. & Schubel, P.J. & Warrior, N.A., 2011. "A cost and performance comparison of LRTM and VI for the manufacture of large scale wind turbine blades," Renewable Energy, Elsevier, vol. 36(2), pages 866-871.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:183-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.