IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i2p529-535.html
   My bibliography  Save this article

Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance

Author

Listed:
  • Inamuddin,
  • Cheema, Taqi Ahmad
  • Zaidi, S.M.J.
  • Rahman, S.U.

Abstract

Gas diffusion layer (GDL) is an important component of a proton exchange membrane fuel cell (PEMFC) to take part in the interplay of the transport of different species. It has been found that the performance of a PEMFC depends upon the morphology of the GDL. The performance of PEM fuel cell varies with different porosity and thickness of the GDL. Hence, a three dimensional model is simulated to find out the effects of porosity and thickness of GDL on PEMFC performance using a commercial code CFD-ACE+. It was observed that high porosity gave high current density by allowing more reactants to reach the reaction site. Similarly greater thickness of the GDL gives reactant species to increase the consumption rate at the GDL/catalyst layer interface. The simulation results showed that the connection of bipolar plate with the GDL played an important role for reducing the amount of reactants to reach the catalyst layer especially under the land area of the bipolar plate. However, this effect seems to decrease with an increase of overall porosity and the thickness of the GDL.

Suggested Citation

  • Inamuddin, & Cheema, Taqi Ahmad & Zaidi, S.M.J. & Rahman, S.U., 2011. "Three dimensional numerical investigations for the effects of gas diffusion layer on PEM fuel cell performance," Renewable Energy, Elsevier, vol. 36(2), pages 529-535.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:2:p:529-535
    DOI: 10.1016/j.renene.2010.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110003320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roshandel, R. & Farhanieh, B. & Saievar-Iranizad, E., 2005. "The effects of porosity distribution variation on PEM fuel cell performance," Renewable Energy, Elsevier, vol. 30(10), pages 1557-1572.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Reza Omrani & Bahman Shabani, 2019. "Gas Diffusion Layers in Fuel Cells and Electrolysers: A Novel Semi-Empirical Model to Predict Electrical Conductivity of Sintered Metal Fibres," Energies, MDPI, vol. 12(5), pages 1-17, March.
    4. Zhang, Jun & Zhang, Caizhi & Li, Jin & Deng, Bo & Fan, Min & Ni, Meng & Mao, Zhanxin & Yuan, Honggeng, 2021. "Multi-perspective analysis of CO poisoning in high-temperature proton exchange membrane fuel cell stack via numerical investigation," Renewable Energy, Elsevier, vol. 180(C), pages 313-328.
    5. Lu, Xu & Leung, Dennis Y.C. & Wang, Huizhi & Maroto-Valer, M. Mercedes & Xuan, Jin, 2016. "A pH-differential dual-electrolyte microfluidic electrochemical cells for CO2 utilization," Renewable Energy, Elsevier, vol. 95(C), pages 277-285.
    6. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Lingyi & Chen, Li & Zhang, Ruiyuan & Peng, Ming & Tao, Wen-Quan, 2022. "Pore-scale simulation of two-phase flow and oxygen reactive transport in gas diffusion layer of proton exchange membrane fuel cells: Effects of nonuniform wettability and porosity," Energy, Elsevier, vol. 253(C).
    2. Najjari, Mustapha & Khemili, Faycel & Ben Nasrallah, Sassi, 2008. "The effects of the cathode flooding on the transient responses of a PEM fuel cell," Renewable Energy, Elsevier, vol. 33(8), pages 1824-1831.
    3. Kong, Im Mo & Jung, Aeri & Kim, Young Sang & Kim, Min Soo, 2017. "Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 478-487.
    4. Zikhona Nondudule & Jessica Chamier & Mahabubur Chowdhury, 2021. "Effect of Stratification of Cathode Catalyst Layers on Durability of Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(10), pages 1-17, May.
    5. Xing, Lei & Shi, Weidong & Su, Huaneng & Xu, Qian & Das, Prodip K. & Mao, Baodong & Scott, Keith, 2019. "Membrane electrode assemblies for PEM fuel cells: A review of functional graded design and optimization," Energy, Elsevier, vol. 177(C), pages 445-464.
    6. Kong, Im Mo & Choi, Jong Won & Kim, Sung Il & Lee, Eun Sook & Kim, Min Soo, 2015. "Experimental study on the self-humidification effect in proton exchange membrane fuel cells containing double gas diffusion backing layer," Applied Energy, Elsevier, vol. 145(C), pages 345-353.
    7. Rakhshanpouri, S. & Rowshanzamir, S., 2013. "Water transport through a PEM (proton exchange membrane) fuel cell in a seven-layer model," Energy, Elsevier, vol. 50(C), pages 220-231.
    8. Lee, Yongtaek & Kim, Bosung & Kim, Yongchan & Li, Xianguo, 2011. "Degradation of gas diffusion layers through repetitive freezing," Applied Energy, Elsevier, vol. 88(12), pages 5111-5119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:2:p:529-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.