IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i12p3305-3312.html
   My bibliography  Save this article

Performance study of power density in PEMFC for power generation from solar energy

Author

Listed:
  • Chaurasia, Pramod Behari Lal
  • Panja, Nimai
  • Kendall, Kevin

Abstract

A study has been carried-out on power density in the Proton Exchange Membrane Fuel Cell (PEMFC) for its application for solar power generation. It involves a fuel cell approach assisted with specific electro-catalysts to process special chemical coupling (2-propanol/acetone/H2) for generating the power. This knowledge will be useful for designing the solar power generation system based on this special chemical coupling enabling to use low-grade solar heat (<100 °C). For this purpose, a wide study has been conducted in the PEMFC using different catalytic electrodes at various orientations (0°, 45° and 90°). The investigations were carried-out at different temperatures from 45 °C to 60 °C using liquid oxidant mixtures in different proportions. The maximum power density attained was 1.78 mW cm−2 at 60 °C. The PEMFC based technique for solar power generation may prove to be a promising option to harness this everlasting source of sun’s energy in the coming future.

Suggested Citation

  • Chaurasia, Pramod Behari Lal & Panja, Nimai & Kendall, Kevin, 2011. "Performance study of power density in PEMFC for power generation from solar energy," Renewable Energy, Elsevier, vol. 36(12), pages 3305-3312.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3305-3312
    DOI: 10.1016/j.renene.2011.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111002047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    2. Zahedi, A., 2006. "Solar photovoltaic (PV) energy; latest developments in the building integrated and hybrid PV systems," Renewable Energy, Elsevier, vol. 31(5), pages 711-718.
    3. Hu, Eric & Yang, YongPing & Nishimura, Akira & Yilmaz, Ferdi & Kouzani, Abbas, 2010. "Solar thermal aided power generation," Applied Energy, Elsevier, vol. 87(9), pages 2881-2885, September.
    4. Boudghene Stambouli, A. & Traversa, E., 2002. "Fuel cells, an alternative to standard sources of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 295-304, September.
    5. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    6. Hou, Yongping & Yang, Zhihua & Fang, Xue, 2011. "An experimental study on the dynamic process of PEM fuel cell stack voltage," Renewable Energy, Elsevier, vol. 36(1), pages 325-329.
    7. Chaurasia, P.B.L, 2000. "Solar water heaters based on concrete collectors," Energy, Elsevier, vol. 25(8), pages 703-716.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Lixin & Liu, Yang & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2023. "Comparison and evaluation of mega watts proton exchange membrane fuel cell combined heat and power system under different waste heat recovery methods," Renewable Energy, Elsevier, vol. 210(C), pages 295-305.
    2. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    3. Pan, Pengcheng & Sun, Yuwei & Yuan, Chengqing & Yan, Xinping & Tang, Xujing, 2021. "Research progress on ship power systems integrated with new energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, Vipin & Padmanaban, Sanjeevikumar & Venkitusamy, Karthikeyan & Selvamuthukumaran, Rajasekar & Blaabjerg, Frede & Siano, Pierluigi, 2017. "Recent advances and challenges of fuel cell based power system architectures and control – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 10-18.
    2. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    3. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    4. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    5. Ehsan F Abbas & Tahseen A Tahseen & N A Madlol & Hulya S Sulaiman & Hussein A Z Al-bonsrulah & Vijayanandh Raja & Mohammed Al-Bahrani, 2022. "High performance evaluation of a PV/T hybrid system connected with a thermal store unit holding paraffin wax [The effect of adding paraffin wax to PVT collector on its efficiency: a practical study," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 1158-1165.
    6. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
    7. Jiang, Yue & Duan, Liqiang & Pang, Liping & Song, Jifeng, 2021. "Thermal performance study of tower solar aided double reheat coal-fired power generation system," Energy, Elsevier, vol. 230(C).
    8. Zhang, Xiaoqing & Yang, Jiapei & Ma, Xiao & Zhuge, Weilin & Shuai, Shijin, 2022. "Modelling and analysis on effects of penetration of microporous layer into gas diffusion layer in PEM fuel cells: Focusing on mass transport," Energy, Elsevier, vol. 254(PA).
    9. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    10. Hong, Hui & Peng, Shuo & Zhang, Hao & Sun, Jie & Jin, Hongguang, 2017. "Performance assessment of hybrid solar energy and coal-fired power plant based on feed-water preheating," Energy, Elsevier, vol. 128(C), pages 830-838.
    11. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    12. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    13. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    14. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    15. Selcuk Bulat & Erdal Büyükbicakci & Mustafa Erkovan, 2024. "Efficiency Enhancement in Photovoltaic–Thermoelectric Hybrid Systems through Cooling Strategies," Energies, MDPI, vol. 17(2), pages 1-12, January.
    16. Zhang, Wei & Zhu, Rui & Liu, Bin & Ramakrishna, Seeram, 2012. "High-performance hybrid solar cells employing metal-free organic dye modified TiO2 as photoelectrode," Applied Energy, Elsevier, vol. 90(1), pages 305-308.
    17. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    18. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    19. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    20. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:12:p:3305-3312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.