IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p966-972.html
   My bibliography  Save this article

Phases of icing on wind turbine blades characterized by ice accumulation

Author

Listed:
  • Kraj, Andrea G.
  • Bibeau, Eric L.

Abstract

Icing experiments on wind turbine blade profiles have been performed at the University of Manitoba Icing Tunnel Facility to facilitate a greater understanding of the mechanisms involved in the icing process for wind turbines exposed to cold climates. Blade icing results in the degradation of power performance and is a critical issue for the optimization of power performance and safe operation of wind turbines. Accumulation rate, the amount of ice that accumulates at the leading edge of the blade profile as a function of time, provides a characteristic measurement that can be used to classify the phases of icing in an icing event and further identify the severity of potential problems arising as a result of ice accumulation on wind turbine blades. To control this characteristic, the mitigation strategies that were employed involved coatings, heat treatments and the combination thereof, in both glaze and rime icing regimes. By understanding the icing process and its characteristic behavior to non-mitigated and mitigated scenarios, the phases of icing of both circumstances may be defined. This paper documents the data recorded from the experimental icing event and provides results of the comparative behavior of the icing mitigation strategies and extends this understanding to define the phases of icing on wind turbine blades.

Suggested Citation

  • Kraj, Andrea G. & Bibeau, Eric L., 2010. "Phases of icing on wind turbine blades characterized by ice accumulation," Renewable Energy, Elsevier, vol. 35(5), pages 966-972.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:966-972
    DOI: 10.1016/j.renene.2009.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810900408X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    2. Gao, Linyue & Liu, Yang & Ma, Liqun & Hu, Hui, 2019. "A hybrid strategy combining minimized leading-edge electric-heating and superhydro-/ice-phobic surface coating for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 140(C), pages 943-956.
    3. Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
    4. Jennie Molinder & Sebastian Scher & Erik Nilsson & Heiner Körnich & Hans Bergström & Anna Sjöblom, 2020. "Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests," Energies, MDPI, vol. 14(1), pages 1-19, December.
    5. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    6. Wang, Yibing & Xu, Yuanming & Su, Fei, 2020. "Damage accumulation model of ice detach behavior in ultrasonic de-icing technology," Renewable Energy, Elsevier, vol. 153(C), pages 1396-1405.
    7. Jiawei Jiang & Yizhou Shen & Yangjiangshan Xu & Zhen Wang & Jie Tao & Senyun Liu & Weilan Liu & Haifeng Chen, 2024. "An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Zanon, Alessandro & De Gennaro, Michele & Kühnelt, Helmut, 2018. "Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies," Renewable Energy, Elsevier, vol. 115(C), pages 760-772.
    9. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    10. Sun, Haoyang & Lin, Guiping & Jin, Haichuan & Bu, Xueqin & Cai, Chujiang & Jia, Qi & Ma, Kuiyuan & Wen, Dongsheng, 2021. "Experimental investigation of surface wettability induced anti-icing characteristics in an ice wind tunnel," Renewable Energy, Elsevier, vol. 179(C), pages 1179-1190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:966-972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.