IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p275-282.html
   My bibliography  Save this article

Single-stage sine-wave inverter for an autonomous operation of solar photovoltaic energy conversion system

Author

Listed:
  • Saravana Ilango, G.
  • Srinivasa Rao, P.
  • Karthikeyan, A.
  • Nagamani, C.

Abstract

This paper proposes a high performance single-stage inverter topology for the autonomous operation of a solar photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the solar dc power into high quality ac power for driving autonomous loads without any filter. An MPPT circuit with parallel connection is implemented so that the part of the energy generated is processed by the dc–dc converter to supply dc loads. The line current total harmonic distortion (THD) obtained using this configuration is quite reasonable. The proposed topology has several desirable features such as low cost and compact size as number of switches used, are limited to four as against six switches used in classical two-stage inverters. In this paper analysis, simulation and experimental results are presented.

Suggested Citation

  • Saravana Ilango, G. & Srinivasa Rao, P. & Karthikeyan, A. & Nagamani, C., 2010. "Single-stage sine-wave inverter for an autonomous operation of solar photovoltaic energy conversion system," Renewable Energy, Elsevier, vol. 35(1), pages 275-282.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:275-282
    DOI: 10.1016/j.renene.2009.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109002791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sampaio, Leonardo P. & de Brito, Moacyr A.G. & de A. e Melo, Guilherme & Canesin, Carlos A., 2016. "Grid-tie three-phase inverter with active power injection and reactive power compensation," Renewable Energy, Elsevier, vol. 85(C), pages 854-864.
    2. Taghvaee, M.H. & Radzi, M.A.M. & Moosavain, S.M. & Hizam, Hashim & Hamiruce Marhaban, M., 2013. "A current and future study on non-isolated DC–DC converters for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 216-227.
    3. Krystian Siczek & Krzysztof Siczek & Piotr Piersa & Łukasz Adrian & Szymon Szufa & Andrzej Obraniak & Przemysław Kubiak & Wojciech Zakrzewicz & Grzegorz Bogusławski, 2020. "The Comparative Study on the Li-S and Li-ion Batteries Cooperating with the Photovoltaic Array," Energies, MDPI, vol. 13(19), pages 1-24, October.
    4. Boumaaraf, Houria & Talha, Abdelaziz & Bouhali, Omar, 2015. "A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1171-1179.
    5. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.
    6. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive decoupled control of 4-leg voltage-source inverters for standalone photovoltaic systems: Adjusting transient state response," Renewable Energy, Elsevier, vol. 36(10), pages 2733-2741.
    7. Nasiri, Reza & Radan, Ahmad, 2011. "Pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems: Considering digital delays," Renewable Energy, Elsevier, vol. 36(2), pages 858-865.
    8. Nasiri, Reza & Radan, Ahmad, 2011. "Adaptive pole-placement control of 4-leg voltage-source inverters for standalone photovoltaic systems," Renewable Energy, Elsevier, vol. 36(7), pages 2032-2042.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:275-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.