IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i5p1354-1358.html
   My bibliography  Save this article

Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase

Author

Listed:
  • Kosugi, Akihiko
  • Kondo, Akihiko
  • Ueda, Mitsuyoshi
  • Murata, Yoshinori
  • Vaithanomsat, Pilanee
  • Thanapase, Warunee
  • Arai, Takamitsu
  • Mori, Yutaka

Abstract

Cassava (Manihot esculenta Crantz) pulp, produced in large amounts as a by-product of starch manufacturing, is a major biomass resource in Southeast Asian countries. It contains abundant starch (approximately 60%) and cellulose fiber (approximately 20%). To effectively utilize the cassava pulp, an attempt was made to convert its components to ethanol using a sake-brewing yeast displaying glucoamylase on the cell surface. Saccharomyces cerevisiae Kyokai no. 7 (strain K7) displaying Rhizopus oryzae glucoamylase, designated strain K7G, was constructed using the C-terminal-half region of α-agglutinin. A sample of cassava pulp was pretreated with a hydrothermal reaction (140°C for 1h), followed by treatment with a Trichoderma reesei cellulase to hydrolyze the cellulose in the sample. The K7G strain fermented starch and glucose in pretreated samples without addition of amylolytic enzymes, and produced ethanol in 91% and 80% of theoretical yield from 5% and 10% cassava pulp, respectively.

Suggested Citation

  • Kosugi, Akihiko & Kondo, Akihiko & Ueda, Mitsuyoshi & Murata, Yoshinori & Vaithanomsat, Pilanee & Thanapase, Warunee & Arai, Takamitsu & Mori, Yutaka, 2009. "Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase," Renewable Energy, Elsevier, vol. 34(5), pages 1354-1358.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1354-1358
    DOI: 10.1016/j.renene.2008.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810800339X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Lin & Sun, Zeyi & Yao, Xufeng & Wang, Donghai, 2016. "Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation," Energy, Elsevier, vol. 96(C), pages 474-481.
    2. Yang, Peizhou & Guo, Liqiong & Cheng, Shujie & Lou, Nannan & Lin, Junfang, 2011. "Recombinant multi-functional cellulase activity in submerged fermentation of lignocellulosic wastes," Renewable Energy, Elsevier, vol. 36(12), pages 3268-3272.
    3. Chatchai Kaewpila & Suwit Thip-uten & Anusorn Cherdthong & Waroon Khota, 2021. "Impact of Cellulase and Lactic Acid Bacteria Inoculant to Modify Ensiling Characteristics and In Vitro Digestibility of Sweet Corn Stover and Cassava Pulp Silage," Agriculture, MDPI, vol. 11(1), pages 1-12, January.
    4. Adekunle, Ademola & Orsat, Valerie & Raghavan, Vijaya, 2016. "Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 518-530.
    5. Rui Pacheco & Carla Silva, 2019. "Global Warming Potential of Biomass-to-Ethanol: Review and Sensitivity Analysis through a Case Study," Energies, MDPI, vol. 12(13), pages 1-18, July.
    6. Eckert, C.T. & Frigo, E.P. & Albrecht, L.P. & Albrecht, A.J.P. & Christ, D. & Santos, W.G. & Berkembrock, E. & Egewarth, V.A., 2018. "Maize ethanol production in Brazil: Characteristics and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3907-3912.
    7. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    8. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2014. "Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide," Applied Energy, Elsevier, vol. 128(C), pages 277-283.
    9. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:5:p:1354-1358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.