IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i4p1100-1105.html
   My bibliography  Save this article

Hot air balloon engine

Author

Listed:
  • Edmonds, Ian

Abstract

This paper describes a solar powered reciprocating engine based on the use of a tethered hot air balloon fuelled by hot air from a glazed collector. The basic theory of the balloon engine is derived and used to predict the performance of engines in the 10kW to 1MW range. The engine can operate over several thousand metres altitude with thermal efficiencies higher than 5%. The engine thermal efficiency compares favorably with the efficiency of other engines, such as solar updraft towers, that also utilize the atmospheric temperature gradient but are limited by technical constraints to operate over a much lower altitude range. The increased efficiency allows the use of smaller area glazed collectors. Preliminary cost estimates suggest a lower $/W installation cost than equivalent power output tower engines.

Suggested Citation

  • Edmonds, Ian, 2009. "Hot air balloon engine," Renewable Energy, Elsevier, vol. 34(4), pages 1100-1105.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1100-1105
    DOI: 10.1016/j.renene.2008.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108002796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michaud, L. M., 1999. "Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere," Applied Energy, Elsevier, vol. 62(4), pages 241-251, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Wei & Lu, Xiaochen & Wang, Chao & Wu, Yao & Ma, Rong & Song, Jian, 2015. "Dynamic modelling and simulation of a heat engine aerobot for atmospheric energy utilization," Energy, Elsevier, vol. 79(C), pages 439-446.
    2. Müller, Gerald, 2010. "Low pressure solar thermal converter," Renewable Energy, Elsevier, vol. 35(1), pages 318-321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Kayiem, Hussain H. & Tukkee, Ali M. & See, Yuan K., 2024. "Experimental assessment of a solar vortex engine integrated with sensible TES at different collector configurations," Renewable Energy, Elsevier, vol. 227(C).
    2. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    3. Luis Rodriguez-Lucas & Chen Ning & Marcelo Fajardo-Pruna & Yugui Yang, 2021. "Study of Vortex Systems as a Method to Weakening the Urban Heat Islands within the Financial District in Large Cities," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    4. Nizetic, Sandro, 2011. "Technical utilisation of convective vortices for carbon-free electricity production: A review," Energy, Elsevier, vol. 36(2), pages 1236-1242.
    5. He, Yuanping & Zhang, Mingxu & Li, Weijun & Su, Junwei & Kase, Kiwamu & Yu, Chuck Wah & Gu, Zhaolin, 2019. "Feasibility of a new helical blade structure for a PV integrated wind turbine in a heat-driven swirling wind field," Energy, Elsevier, vol. 185(C), pages 585-598.
    6. Al-Kayiem, Hussain H. & Mustafa, Ayad T. & Gilani, Syed I.U., 2018. "Solar vortex engine: Experimental modelling and evaluation," Renewable Energy, Elsevier, vol. 121(C), pages 389-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1100-1105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.