IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2751-2756.html
   My bibliography  Save this article

Design of a new three-degree of freedom spherical motor for photovoltaic-tracking systems

Author

Listed:
  • Oner, Yusuf
  • Cetin, Engin
  • Ozturk, Harun Kemal
  • Yilanci, Ahmet

Abstract

Photovoltaic (PV) panels directly convert the solar energy to electrical energy. The amount of electrical energy converted by PV panels mainly depends on incident solar radiation. Sun tracking systems can be used to maximize energy production since they ensure keeping the photovoltaic panels perpendicular to the incoming solar radiation. Spherical motors, which have the linear and circular movement ability in three independent dimensions, can be used for precisely tracking the sun as a solution. In this study, a spherical motor controlled by a micro-controller is designed for a PV-tracking system with the ability to move on two axes. Performance of PV-tracking system over a fixed tilted one is evaluated for the climate condition of Denizli, Turkey. The designed sun tracking system is observed to be improving this performance apparently using the output voltages obtained for one day.

Suggested Citation

  • Oner, Yusuf & Cetin, Engin & Ozturk, Harun Kemal & Yilanci, Ahmet, 2009. "Design of a new three-degree of freedom spherical motor for photovoltaic-tracking systems," Renewable Energy, Elsevier, vol. 34(12), pages 2751-2756.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2751-2756
    DOI: 10.1016/j.renene.2009.04.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.04.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sungur, Cemil, 2009. "Multi-axes sun-tracking system with PLC control for photovoltaic panels in Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1119-1125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    2. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    3. Singh, Rajesh & Kumar, Suresh & Gehlot, Anita & Pachauri, Rupendra, 2018. "An imperative role of sun trackers in photovoltaic technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3263-3278.
    4. Kleymilson N. Souza & Ricardo S. T. Pontes & Andressa P. Oliveira & Guilherme A. Barreto, 2018. "Design and Control of a Three-Coil Permanent Magnet Spherical Motor," Energies, MDPI, vol. 11(8), pages 1-17, August.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skouri, Safa & Ben Haj Ali, Abdessalem & Bouadila, Salwa & Ben Salah, Mohieddine & Ben Nasrallah, Sassi, 2016. "Design and construction of sun tracking systems for solar parabolic concentrator displacement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1419-1429.
    2. Chiemeka Onyeka Okoye & Serkan Abbasoglu, 2013. "Empirical Investigation of Fixed and Dual Axis Sun Tracking Photovoltaic System Installations in Turkish Republic of Northern Cyprus," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 3(5), pages 440-453, May.
    3. Alphonsus, Ephrem Ryan & Abdullah, Mohammad Omar, 2016. "A review on the applications of programmable logic controllers (PLCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1185-1205.
    4. Chang, Kai & Zhang, Qingyuan, 2019. "Improvement of the hourly global solar model and solar radiation for air-conditioning design in China," Renewable Energy, Elsevier, vol. 138(C), pages 1232-1238.
    5. Sidek, M.H.M. & Azis, N. & Hasan, W.Z.W. & Ab Kadir, M.Z.A. & Shafie, S. & Radzi, M.A.M., 2017. "Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control," Energy, Elsevier, vol. 124(C), pages 160-170.
    6. Okoye, Chiemeka Onyeka & Bahrami, Arian & Atikol, Ugur, 2018. "Evaluating the solar resource potential on different tracking surfaces in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1569-1581.
    7. Chang, Tian Pau, 2009. "Performance study on the east–west oriented single-axis tracked panel," Energy, Elsevier, vol. 34(10), pages 1530-1538.
    8. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    9. Koussa, M. & Cheknane, A. & Hadji, S. & Haddadi, M. & Noureddine, S., 2011. "Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions," Applied Energy, Elsevier, vol. 88(5), pages 1756-1771, May.
    10. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2016. "The effect of latitude on the performance of different solar trackers in Europe and Africa," Applied Energy, Elsevier, vol. 177(C), pages 896-906.
    11. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    12. Sakdirat Kaewunruen & Panrawee Rungskunroch & Joshua Welsh, 2018. "A Digital-Twin Evaluation of Net Zero Energy Building for Existing Buildings," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    13. Nurzhigit Kuttybay & Ahmet Saymbetov & Saad Mekhilef & Madiyar Nurgaliyev & Didar Tukymbekov & Gulbakhar Dosymbetova & Aibolat Meiirkhanov & Yeldos Svanbayev, 2020. "Optimized Single-Axis Schedule Solar Tracker in Different Weather Conditions," Energies, MDPI, vol. 13(19), pages 1-18, October.
    14. Ahmad, Salsabila & Shafie, Suhaidi & Ab Kadir, Mohd Zainal Abidin & Ahmad, Noor Syafawati, 2013. "On the effectiveness of time and date-based sun positioning solar collector in tropical climate: A case study in Northern Peninsular Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 635-642.
    15. Bahrami, Arian & Okoye, Chiemeka Onyeka & Atikol, Ugur, 2017. "Technical and economic assessment of fixed, single and dual-axis tracking PV panels in low latitude countries," Renewable Energy, Elsevier, vol. 113(C), pages 563-579.
    16. Huilin Shang & Wei Shen, 2023. "Design and Implementation of a Dual-Axis Solar Tracking System," Energies, MDPI, vol. 16(17), pages 1-13, August.
    17. Bahrami, Arian & Okoye, Chiemeka Onyeka, 2018. "The performance and ranking pattern of PV systems incorporated with solar trackers in the northern hemisphere," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 138-151.
    18. Okoye, Chiemeka Onyeka & Taylan, Onur & Baker, Derek K., 2016. "Solar energy potentials in strategically located cities in Nigeria: Review, resource assessment and PV system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 550-566.
    19. Chang, Tian Pau, 2009. "Output energy of a photovoltaic module mounted on a single-axis tracking system," Applied Energy, Elsevier, vol. 86(10), pages 2071-2078, October.
    20. Song, Jifeng & Yang, Yongping & Zhu, Yong & Jin, Zhou, 2013. "A high precision tracking system based on a hybrid strategy designed for concentrated sunlight transmission via fibers," Renewable Energy, Elsevier, vol. 57(C), pages 12-19.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2751-2756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.