IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i8p1880-1891.html
   My bibliography  Save this article

Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy

Author

Listed:
  • Martínez, E.
  • Sanz, F.
  • Blanco, J.
  • Daroca, F.
  • Jiménez, E.

Abstract

Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation.

Suggested Citation

  • Martínez, E. & Sanz, F. & Blanco, J. & Daroca, F. & Jiménez, E., 2008. "Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy," Renewable Energy, Elsevier, vol. 33(8), pages 1880-1891.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1880-1891
    DOI: 10.1016/j.renene.2007.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107003709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tapia, A. & Tapia, G. & Ostolaza, J.X., 2004. "Reactive power control of wind farms for voltage control applications," Renewable Energy, Elsevier, vol. 29(3), pages 377-392.
    2. Jefferson, Michael, 2006. "Sustainable energy development: performance and prospects," Renewable Energy, Elsevier, vol. 31(5), pages 571-582.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng Peng & Xunbo Wu & Yelin Fu & Kin Keung Lai, 2017. "Alternative approaches to constructing composite indicators: an application to construct a Sustainable Energy Index for APEC economies," Operational Research, Springer, vol. 17(3), pages 747-759, October.
    2. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    3. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Furukawa, Kazuma & Yamamoto, Masayuki, 2016. "The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 111(C), pages 260-271.
    4. Maqbool, Rashid, 2018. "Efficiency and effectiveness of factors affecting renewable energy projects; an empirical perspective," Energy, Elsevier, vol. 158(C), pages 944-956.
    5. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    6. Boynuegri, A.R. & Vural, B. & Tascikaraoglu, A. & Uzunoglu, M. & Yumurtacı, R., 2012. "Voltage regulation capability of a prototype Static VAr Compensator for wind applications," Applied Energy, Elsevier, vol. 93(C), pages 422-431.
    7. Schönleber, Kevin & Collados, Carlos & Pinto, Rodrigo Teixeira & Ratés-Palau, Sergi & Gomis-Bellmunt, Oriol, 2017. "Optimization-based reactive power control in HVDC-connected wind power plants," Renewable Energy, Elsevier, vol. 109(C), pages 500-509.
    8. Siniscalchi-Minna, Sara & Bianchi, Fernando D. & De-Prada-Gil, Mikel & Ocampo-Martinez, Carlos, 2019. "A wind farm control strategy for power reserve maximization," Renewable Energy, Elsevier, vol. 131(C), pages 37-44.
    9. Kundu, Nobinkhor, 2014. "Sustainable energy for Development: Access to finance on renewable energy and energy efficiency technologies for Bangladesh," MPRA Paper 65154, University Library of Munich, Germany, revised 20 Jun 2014.
    10. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    11. Soares, Orlando & Gonçalves, Henrique & Martins, António & Carvalho, Adriano, 2010. "Nonlinear control of the doubly-fed induction generator in wind power systems," Renewable Energy, Elsevier, vol. 35(8), pages 1662-1670.
    12. Hussain, Shahid & Xuetong, Wang & Maqbool, Rashid & Hussain, Mustansar & Shahnawaz, Muhammad, 2022. "The influence of government support, organizational innovativeness and community participation in renewable energy project success: A case of Pakistan," Energy, Elsevier, vol. 239(PC).
    13. Pietrosemoli, Licia & Rodríguez-Monroy, Carlos, 2019. "The Venezuelan energy crisis: Renewable energies in the transition towards sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 415-426.
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Agnieszka Mazur-Dudzińska, 2021. "The Situation of Households on the Energy Market in the European Union: Consumption, Prices, and Renewable Energy," Energies, MDPI, vol. 14(19), pages 1-21, October.
    15. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    16. Girard, A. & Gago, E.J. & Ordoñez, J. & Muneer, T., 2016. "Spain's energy outlook: A review of PV potential and energy export," Renewable Energy, Elsevier, vol. 86(C), pages 703-715.
    17. Hatefi, S.M. & Torabi, S.A., 2010. "A common weight MCDA-DEA approach to construct composite indicators," Ecological Economics, Elsevier, vol. 70(1), pages 114-120, November.
    18. Stanisław Bielski & Anna Zielińska-Chmielewska & Renata Marks-Bielska, 2021. "Use of Environmental Management Systems and Renewable Energy Sources in Selected Food Processing Enterprises in Poland," Energies, MDPI, vol. 14(11), pages 1-16, May.
    19. Ordóñez, J. & Jadraque, E. & Alegre, J. & Martínez, G., 2010. "Analysis of the photovoltaic solar energy capacity of residential rooftops in Andalusia (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2122-2130, September.
    20. Pietrosemoli, Licia & Rodríguez Monroy, Carlos, 2013. "The impact of sustainable construction and knowledge management on sustainability goals. A review of the Venezuelan renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 683-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:8:p:1880-1891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.