IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i3p491-500.html
   My bibliography  Save this article

Occurrence of standard skies during typical daytime half-days

Author

Listed:
  • Darula, Stanislav
  • Kittler, Richard

Abstract

The current trials to introduce new daylight assessment criteria for future building designs as well as for renewable energy simulations with the trend to implement annual daylight profiles for a specific locale or region need more detail information on the exterior daylight conditions. Bratislava is the only locality in Central Europe where a CIE-IDMP general station is recording 1-min regular daylight measurements since 1994 and 10-year data gathered can be used now to derive models valid for wider regions. In this paper, the analysis of measurements and sky-type occurrence is representing daylight conditions only for this single site. As the meteorological net of observatories register sunshine duration for longer periods worldwide, also this information may serve as the basis for modelling exterior daylight illuminance courses as well as typical sky conditions when no other measurements are available. Furthermore, the new General Sky Standard adopted by CIE in 2003 and by ISO in 2004 gives the possibility to study actual skies occurring under four characteristic daylight situations associated with sunshine duration during typical half-days.

Suggested Citation

  • Darula, Stanislav & Kittler, Richard, 2008. "Occurrence of standard skies during typical daytime half-days," Renewable Energy, Elsevier, vol. 33(3), pages 491-500.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:3:p:491-500
    DOI: 10.1016/j.renene.2007.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107001115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kittler, R. & Darula, S., 2002. "Parametric definition of the daylight climate," Renewable Energy, Elsevier, vol. 26(2), pages 177-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosch, J.L. & Batlles, F.J. & Zarzalejo, L.F. & López, G., 2010. "Solar resources estimation combining digital terrain models and satellite images techniques," Renewable Energy, Elsevier, vol. 35(12), pages 2853-2861.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C., 2017. "CIE Standard Sky classification by accessible climatic indices," Renewable Energy, Elsevier, vol. 113(C), pages 347-356.
    2. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    3. Lou, Siwei & Huang, Yu & Li, Danny H.W. & Xia, Dawei & Zhou, Xiaoqing & Zhao, Yang, 2020. "A novel method for fast sky conditions identification from global solar radiation measurements," Renewable Energy, Elsevier, vol. 161(C), pages 77-90.
    4. Li, Danny H.W. & Chau, T.C. & Wan, Kevin K.W., 2014. "A review of the CIE general sky classification approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 563-574.
    5. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    6. Fakra, A.H. & Boyer, H. & Miranville, F. & Bigot, D., 2011. "A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate," Renewable Energy, Elsevier, vol. 36(1), pages 298-306.
    7. Li, Danny H.W. & Chau, Natalie T.C. & Wan, Kevin K.W., 2013. "Predicting daylight illuminance and solar irradiance on vertical surfaces based on classified standard skies," Energy, Elsevier, vol. 53(C), pages 252-258.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:3:p:491-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.