IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i15p2257-2271.html
   My bibliography  Save this article

Optimum thermoeconomic and thermodynamic performance characteristics of an irreversible three-heat-source heat pump

Author

Listed:
  • Wu, Suzhi
  • Lin, Guoxing
  • Chen, Jincan

Abstract

The coefficient of performance and specific heating load of an irreversible three-heat-source heat pump are given by using a general cycle model affected by the finite-rate heat transfer, heat leak and internal irreversibility of the cyclic working fluid. The heat pumping load divided by the total cost per unit time is taken as a new objective function and used to investigate the performance of the heat pump. The thermoeconomic and thermodynamic performance characteristics of the heat pump are discussed in detail. Some important performance parameters such as the thermoeconomic objective function and coefficient of performance are optimized. The optimally operating regions of the heat pump and the bounds of several performance parameters are determined. Finally, it is pointed out that the Carnot heat pump may be taken as a special case of a three-heat-source heat pump and consequently its optimal performance can be directly derived from the results obtained here.

Suggested Citation

  • Wu, Suzhi & Lin, Guoxing & Chen, Jincan, 2005. "Optimum thermoeconomic and thermodynamic performance characteristics of an irreversible three-heat-source heat pump," Renewable Energy, Elsevier, vol. 30(15), pages 2257-2271.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:15:p:2257-2271
    DOI: 10.1016/j.renene.2005.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148105000637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2005.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. De Francisco, A. & Illanes, R. & Torres, J.L. & Castillo, M. & De Blas, M. & Prieto, E. & Garcı́a, A., 2002. "Development and testing of a prototype of low-power water–ammonia absorption equipment for solar energy applications," Renewable Energy, Elsevier, vol. 25(4), pages 537-544.
    2. Alexis, G.K. & Rogdakis, E.D., 2002. "Performance of solar driven methanol–water combined ejector–absorption cycle in the Athens area," Renewable Energy, Elsevier, vol. 25(2), pages 249-266.
    3. Kaygusuz, Kamıl, 2000. "Experimental and theoretical investigation of a solar heating system with heat pump," Renewable Energy, Elsevier, vol. 21(1), pages 79-102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gebreslassie, Berhane H. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Multi-objective optimization of sustainable single-effect water/Lithium Bromide absorption cycle," Renewable Energy, Elsevier, vol. 46(C), pages 100-110.
    2. Qin, Xiaoyong & Chen, Lingen & Ge, Yanlin & Sun, Fengrui, 2015. "Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 788-797.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    2. Stitou, Driss & Mazet, Nathalie & Mauran, Sylvain, 2012. "Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning," Energy, Elsevier, vol. 41(1), pages 261-270.
    3. Cong Zhou & Yizhen Li & Fenghao Wang & Zeyuan Wang & Qing Xia & Yuping Zhang & Jun Liu & Boyang Liu & Wanlong Cai, 2023. "A Review of the Performance Improvement Methods of Phase Change Materials: Application for the Heat Pump Heating System," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Fernández-García, A. & Zarza, E. & Valenzuela, L. & Pérez, M., 2010. "Parabolic-trough solar collectors and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1695-1721, September.
    5. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    6. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2017. "Thermal performance of a solar assisted horizontal ground heat exchanger," Energy, Elsevier, vol. 140(P1), pages 1216-1227.
    7. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    8. Yijiang Zeng & Shengyu Li & Jun Lu & Xiaodong Li & Dingding Xing & Jipan Xiao & Zhanhao Zhang & Leihong Li & Xuhui Shi, 2023. "Research on Energy Savings of an Air-Source Heat Pump Hot Water System in a College Student’s Dormitory Building," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    9. Yan, Jia & Cai, Wenjian & Li, Yanzhong, 2012. "Geometry parameters effect for air-cooled ejector cooling systems with R134a refrigerant," Renewable Energy, Elsevier, vol. 46(C), pages 155-163.
    10. Kaygusuz, Kamil & Kaygusuz, Abdullah, 2002. "Renewable energy and sustainable development in Turkey," Renewable Energy, Elsevier, vol. 25(3), pages 431-453.
    11. Ozyurt, Omer & Ekinci, Dundar Arif, 2011. "Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1257-1265, April.
    12. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    13. Bakirci, Kadir, 2010. "Evaluation of the performance of a ground-source heat-pump system with series GHE (ground heat exchanger) in the cold climate region," Energy, Elsevier, vol. 35(7), pages 3088-3096.
    14. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    15. Kaygusuz, Kamil, 2002. "Renewable and sustainable energy use in Turkey: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 339-366, August.
    16. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    17. Fan, Y. & Luo, L. & Souyri, B., 2007. "Review of solar sorption refrigeration technologies: Development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1758-1775, October.
    18. Wu, Wei & Ran, Siyuan & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "NH3-H2O water source absorption heat pump (WSAHP) for low temperature heating: Experimental investigation on the off-design performance," Energy, Elsevier, vol. 115(P1), pages 697-710.
    19. Afshar, O. & Saidur, R. & Hasanuzzaman, M. & Jameel, M., 2012. "A review of thermodynamics and heat transfer in solar refrigeration system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5639-5648.
    20. Hakan Acaroglu & M. Celalettin Baykul, 2016. "Disadvantages of Imperfect Competition in Solar Energy Collector Markets and Policy Recommendations," Research in World Economy, Research in World Economy, Sciedu Press, vol. 7(1), pages 45-51, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:15:p:2257-2271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.