IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i6p895-906.html
   My bibliography  Save this article

Modeling thermal asymmetries in double slope solar stills

Author

Listed:
  • Rubio, Eduardo
  • Fernández, José L.
  • Porta-Gándara, Miguel A.

Abstract

Solar distillation literature reports a generalized use of stills with single and double slope condensing covers, where modeling equations describe a solution approach that considers the condenser as a single element. The solution for a double slope still analysis is generally forced to the case of one with a single flat condensing cover. This paper proposes a new lumped parameters mathematical model to study the asymmetries that arise in the temperature and distillate yield in double slope solar stills. The condenser is studied as a two-element system and non-simplified equations for heat transfer and optical transmission characteristics are used. The model is tested for the case with the strongest thermal differences and validated with experimental data. Overall results show a good correlation between predictions and experimentation.

Suggested Citation

  • Rubio, Eduardo & Fernández, José L. & Porta-Gándara, Miguel A., 2004. "Modeling thermal asymmetries in double slope solar stills," Renewable Energy, Elsevier, vol. 29(6), pages 895-906.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:6:p:895-906
    DOI: 10.1016/j.renene.2003.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubio-Cerda, Eduardo & Porta-Gándara, Miguel A. & Fernández-Zayas, José L., 2002. "Thermal performance of the condensing covers in a triangular solar still," Renewable Energy, Elsevier, vol. 27(2), pages 301-308.
    2. Lawrence, S.A. & Tiwari, G.N., 1991. "Performance of a greenhouse cum solar still for the climatic condition of Port Moresby," Renewable Energy, Elsevier, vol. 1(2), pages 249-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    2. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    3. Hossein Yousefi & Mohamad Aramesh & Bahman Shabani, 2021. "Design Parameters of a Double-Slope Solar Still: Modelling, Sensitivity Analysis, and Optimization," Energies, MDPI, vol. 14(2), pages 1-23, January.
    4. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Shobokshy, Mohammad S. & Hussein, Fahmy M., 1993. "Particulate pollution effects on the performance of greenhouses," Renewable Energy, Elsevier, vol. 3(6), pages 655-660.
    2. Ismail, Basel I., 2009. "Design and performance of a transportable hemispherical solar still," Renewable Energy, Elsevier, vol. 34(1), pages 145-150.
    3. Ameur, S. & Laghrouche, M. & Adane, A., 2001. "Monitoring a greenhouse using a microcontroller-based meteorological data-acquisition system," Renewable Energy, Elsevier, vol. 24(1), pages 19-30.
    4. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    5. Elango, C. & Gunasekaran, N. & Sampathkumar, K., 2015. "Thermal models of solar still—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 856-911.
    6. Kabeel, A.E. & Abdelgaied, Mohamed, 2020. "Enhancement of pyramid-shaped solar stills performance using a high thermal conductivity absorber plate and cooling the glass cover," Renewable Energy, Elsevier, vol. 146(C), pages 769-775.
    7. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    8. Rubio-Cerda, Eduardo & Porta-Gándara, Miguel A. & Fernández-Zayas, José L., 2002. "Thermal performance of the condensing covers in a triangular solar still," Renewable Energy, Elsevier, vol. 27(2), pages 301-308.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:6:p:895-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.