IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i9p1341-1355.html
   My bibliography  Save this article

Transient stability of a fixed speed wind farm

Author

Listed:
  • Ledesma, P.
  • Usaola, J.
  • Rodríguez, J.L.

Abstract

A typical fixed speed wind farm connected to a simple grid is modelled. Using this model, a three-phase fault is applied close to the wind farm, and cleared by disconnecting the affected line. The effect of several electric, mechanical and operational parameters on the critical fault-clearing time of this base case is evaluated and discussed. The studied parameters are the short-circuit power at the connection bus, the reactive power compensation, the distance to the fault, the rotor inertia, the hub-generator resonant frequency, the wind speed and the power output. For each parameter, the relationship between its value and the critical fault-clearing time is shown graphically. The results help to understand the transient stability phenomena in fixed speed wind farms, and could help to design fixed speed wind farms attending to transient stability requirements.

Suggested Citation

  • Ledesma, P. & Usaola, J. & Rodríguez, J.L., 2003. "Transient stability of a fixed speed wind farm," Renewable Energy, Elsevier, vol. 28(9), pages 1341-1355.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:9:p:1341-1355
    DOI: 10.1016/S0960-1481(02)00251-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102002513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00251-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quiggin, Daniel & Cornell, Sarah & Tierney, Michael & Buswell, Richard, 2012. "A simulation and optimisation study: Towards a decentralised microgrid, using real world fluctuation data," Energy, Elsevier, vol. 41(1), pages 549-559.
    2. Mutlu, Özgür Salih & Akpınar, Eyüp & Balıkcı, Abdül, 2009. "Power quality analysis of wind farm connected to Alaçatı substation in Turkey," Renewable Energy, Elsevier, vol. 34(5), pages 1312-1318.
    3. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    4. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    5. Veganzones, C. & Sanchez, J.A. & Martinez, S. & Platero, C.A. & Blazquez, F. & Ramirez, D. & Arribas, J.R. & Merino, J. & Herrero, N. & Gordillo, F., 2011. "Voltage dip generator for testing wind turbines connected to electrical networks," Renewable Energy, Elsevier, vol. 36(5), pages 1588-1594.
    6. Fernández, Luis M. & Saenz, José Ramón & Jurado, Francisco, 2006. "Dynamic models of wind farms with fixed speed wind turbines," Renewable Energy, Elsevier, vol. 31(8), pages 1203-1230.
    7. Ana Rodríguez & Emilio J. Bueno & Álvar Mayor & Francisco J. Rodríguez & Aurelio García-Cerrada, 2014. "Voltage Support Provided by STATCOM in Unbalanced Power Systems," Energies, MDPI, vol. 7(2), pages 1-24, February.
    8. Martins, M. & Perdana, A. & Ledesma, P. & Agneholm, E. & Carlson, O., 2007. "Validation of fixed speed wind turbine dynamic models with measured data," Renewable Energy, Elsevier, vol. 32(8), pages 1301-1316.
    9. Vesipa, Riccardo & Ridolfi, Luca, 2019. "Overshoots in the water-level control of hydropower plants," Renewable Energy, Elsevier, vol. 131(C), pages 800-810.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:9:p:1341-1355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.