IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i4p613-622.html
   My bibliography  Save this article

Heat and mass transfer in a flat plate solar solid adsorption refrigeration ice maker

Author

Listed:
  • Li, M.
  • Wang, R.Z.

Abstract

A uniform pressure model is presented to describe the heat and mass transfer in an adsorbent bed for a flat plate solar ice maker. This model accounts for heat and mass transfer in a porous bed in a two-dimensional transient process. An experiment has been conducted to validate this model and the calculated results are in good agreement with experiments. With the help of this model, the transient analysis and performance prediction of an intermittent solar powered solid refrigerator can be presented.

Suggested Citation

  • Li, M. & Wang, R.Z., 2003. "Heat and mass transfer in a flat plate solar solid adsorption refrigeration ice maker," Renewable Energy, Elsevier, vol. 28(4), pages 613-622.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:4:p:613-622
    DOI: 10.1016/S0960-1481(02)00094-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00094-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2016. "A review on low grade heat powered adsorption cooling systems for ice production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 109-120.
    2. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K. & Sur, Anirban, 2017. "An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 364-376.
    3. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    4. Brites, G.J.V.N. & Costa, J.J. & Costa, V.A.F., 2016. "Influence of the design parameters on the overall performance of a solar adsorption refrigerator," Renewable Energy, Elsevier, vol. 86(C), pages 238-250.
    5. Pesaran, Alireza & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2016. "Review article: Numerical simulation of adsorption heat pumps," Energy, Elsevier, vol. 100(C), pages 310-320.
    6. Li, M. & Huang, H.B. & Wang, R.Z. & Wang, L.L. & Cai, W.D. & Yang, W.M., 2004. "Experimental study on adsorbent of activated carbon with refrigerant of methanol and ethanol for solar ice maker," Renewable Energy, Elsevier, vol. 29(15), pages 2235-2244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:4:p:613-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.