IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v26y2002i3p479-488.html
   My bibliography  Save this article

A novel approach on the determination of the minimal operating efficiency of a PEM fuel cell

Author

Listed:
  • Kazim, Ayoub

Abstract

In this article, a novel mathematical approach is proposed to determine the minimal proton exchange membrane fuel cell efficiency below which it is not recommended to operate the fuel cell. The objective of this proposal is to minimize the annual fuel cost and the electricity cost of a proton exchange membrane (PEM) fuel cell since both terms are efficiency dependent. A new concept developed in this article might be used as a valuable mathematical tool to determine the minimal efficiency required to operate a fuel cell in a reasonable fashion in order to make the fuel cell system technically and economically feasible. Two dimensionless mathematical criteria J1 and J2 were proposed for the annual fuel cost and electricity cost, respectively. A minimum fuel cell efficiency of η̂min=37% was obtained with J1 and J2 values of 2.7 and 0.026, respectively.

Suggested Citation

  • Kazim, Ayoub, 2002. "A novel approach on the determination of the minimal operating efficiency of a PEM fuel cell," Renewable Energy, Elsevier, vol. 26(3), pages 479-488.
  • Handle: RePEc:eee:renene:v:26:y:2002:i:3:p:479-488
    DOI: 10.1016/S0960-1481(01)00083-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148101000830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(01)00083-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Contreras, Alfonso & Posso, Fausto & Guervos, Esther, 2010. "Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela," Applied Energy, Elsevier, vol. 87(4), pages 1376-1385, April.
    2. Ismail, M.S. & Ingham, D.B. & Ma, L. & Pourkashanian, M., 2013. "The contact resistance between gas diffusion layers and bipolar plates as they are assembled in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 52(C), pages 40-45.
    3. Hou, Yongping & Wang, Bowen & Yang, Zhihua, 2011. "A method for evaluating the efficiency of PEM fuel cell engine," Applied Energy, Elsevier, vol. 88(4), pages 1181-1186, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:26:y:2002:i:3:p:479-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.