IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds0960148124018858.html
   My bibliography  Save this article

Unveiling the potential of Au cocatalysts to induce SPR charges on CuO/CdS system for sunlight driven hydrogen production†

Author

Listed:
  • Ishaq, Abubakar
  • Rafiq, Khezina
  • Abid, Muhammad Zeeshan
  • Aiman, Umme
  • Hussain, Ejaz

Abstract

Atmospheric pollution and increasing costs of the fossil fuels have compelled researchers to explore the alternative sources. Objective of current project is to discover catalysts that can drive water splitting reaction with sunlight. To the purpose, visible light active catalysts i.e., CdS, CuO/CdS, and Au@CuO/CdS have been synthesized and evaluated for hydrogen generation activities. Gold cocatalysts have been employed to enhance the surface stability and catalytic efficiencies. Whereas, CuO/CdS heterojunction have been synthesized to improve charge separation ability. The optical characteristics, structural properties, and morphology of catalysts have been evaluated by UV–Vis/DRS, XRD, Raman, BET, SEM, AFM, PL and FTIR techniques. Chemical compositions, photocurrent or charge transfer have been verified with XPS, EDX and EIS results. Catalytic reactions were performed in photoreactor (150 mL/Pyrex), whereas hydrogen production activities were predicted via online GC-TCD (Shimadzu-2010/Japan). Results depict that catalyst with 0.8 % of Au on CuO/CdS exhibit relatively higher activity (i.e., 32.13 mmol g−1 h−1) than the other catalysts of the series. Higher activities were attributed to the presence of Au cocatalysts. It has been predicted that existence of gold develops Schottky junctions that progressively rectify the surface charges (i.e., movement of electrons). Additionally, gold induces the SPR charges and enhances activity of electrons. Schottky junctions formed by Au cocatalysts on CuO/CdS system restrict the charge recombination i.e., back reactions. In this study, various factors like temperature, pH, light intensity and dose of catalysts have been assessed and discussed. On the basis of activities, it has been concluded that work reported herein hold promise to replace the conventional catalysts used for hydrogen energy technologies.

Suggested Citation

  • Ishaq, Abubakar & Rafiq, Khezina & Abid, Muhammad Zeeshan & Aiman, Umme & Hussain, Ejaz, 2024. "Unveiling the potential of Au cocatalysts to induce SPR charges on CuO/CdS system for sunlight driven hydrogen production†," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124018858
    DOI: 10.1016/j.renene.2024.121817
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121817?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Kosco & Soranyel Gonzalez-Carrero & Calvyn T. Howells & Teng Fei & Yifan Dong & Rachid Sougrat & George T. Harrison & Yuliar Firdaus & Rajendar Sheelamanthula & Balaji Purushothaman & Floriana Mor, 2022. "Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution," Nature Energy, Nature, vol. 7(4), pages 340-351, April.
    2. Tsuyoshi Takata & Junzhe Jiang & Yoshihisa Sakata & Mamiko Nakabayashi & Naoya Shibata & Vikas Nandal & Kazuhiko Seki & Takashi Hisatomi & Kazunari Domen, 2020. "Photocatalytic water splitting with a quantum efficiency of almost unity," Nature, Nature, vol. 581(7809), pages 411-414, May.
    3. A. Patrick Behrer & Sam Heft-Neal, 2024. "Higher air pollution in wealthy districts of most low- and middle-income countries," Nature Sustainability, Nature, vol. 7(2), pages 203-212, February.
    4. Rahman, Mohammad Mafizur & Sultana, Nahid & Velayutham, Eswaran, 2022. "Renewable energy, energy intensity and carbon reduction: Experience of large emerging economies," Renewable Energy, Elsevier, vol. 184(C), pages 252-265.
    5. Ananta Dey & Amal Mendalz & Anna Wach & Robert Bericat Vadell & Vitor R. Silveira & Paul Maurice Leidinger & Thomas Huthwelker & Vitalii Shtender & Zbynek Novotny & Luca Artiglia & Jacinto Sá, 2024. "Hydrogen evolution with hot electrons on a plasmonic-molecular catalyst hybrid system," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ahmad, H. & Kamarudin, S.K. & Minggu, L.J. & Kassim, M., 2015. "Hydrogen from photo-catalytic water splitting process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 599-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Yasuda, Masahide & Matsumoto, Tomoko & Yamashita, Toshiaki, 2018. "Sacrificial hydrogen production over TiO2-based photocatalysts: Polyols, carboxylic acids, and saccharides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1627-1635.
    3. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Chong Wang & Bo Wu & Yang Li & Shen Zhou & Conghui Wu & Tianyang Dong & Ying Jiang & Zihui Hua & Yupeng Song & Wei Wen & Jianxin Tian & Yongqiang Chai & Rui Wen & Chunru Wang, 2024. "Aggregation promotes charge separation in fullerene-indacenodithiophene dyad," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Andrzej Pacana & Karolina Czerwińska & Grzegorz Ostasz, 2023. "Analysis of the Level of Efficiency of Control Methods in the Context of Energy Intensity," Energies, MDPI, vol. 16(8), pages 1-26, April.
    6. Yong Liu & Mingjian Zhang & Zhuan Wang & Jiandong He & Jie Zhang & Sheng Ye & Xiuli Wang & Dongfeng Li & Heng Yin & Qianhong Zhu & Huanwang Jing & Yuxiang Weng & Feng Pan & Ruotian Chen & Can Li & Fen, 2022. "Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Tasleem, Sehar & Tahir, Muhammad, 2020. "Current trends in strategies to improve photocatalytic performance of perovskites materials for solar to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Vikas Nandal & Ryota Shoji & Hiroyuki Matsuzaki & Akihiro Furube & Lihua Lin & Takashi Hisatomi & Masanori Kaneko & Koichi Yamashita & Kazunari Domen & Kazuhiko Seki, 2021. "Unveiling charge dynamics of visible light absorbing oxysulfide for efficient overall water splitting," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Wen, Yudong & Ho, Cheuk-Lam & Huang, Shuwen & Kwok, Yan Yi & Huang, Shuping, 2024. "Development of 9,9-Disubstituted Fluorene-based Di-anchoring Photosensitizers for Highly Efficient Hydrogen Evolution," Renewable Energy, Elsevier, vol. 237(PB).
    11. Chunzhi Li & Jiali Liu & He Li & Kaifeng Wu & Junhui Wang & Qihua Yang, 2022. "Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Gupta, Bhavana & Melvin, Ambrose A., 2017. "TiO2/RGO composites: Its achievement and factors involved in hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1384-1392.
    15. Sharma, Shailja & Pai, Mrinal R. & Kaur, Gurpreet & Divya, & Satsangi, Vibha R. & Dass, Sahab & Shrivastav, Rohit, 2019. "Efficient hydrogen generation on CuO core/AgTiO2 shell nano-hetero-structures by photocatalytic splitting of water," Renewable Energy, Elsevier, vol. 136(C), pages 1202-1216.
    16. Wenjun Ge & Siyuan Wu & Derong Yang, 2024. "Who are the genuine contributors to economic development under environmental regulation? Evidence from total factor productivity in the three industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 22801-22838, September.
    17. Akan, Taner, 2023. "Can renewable energy mitigate the impacts of inflation and policy interest on climate change?," Renewable Energy, Elsevier, vol. 214(C), pages 255-289.
    18. Yuting Feng & Tong Zhao, 2022. "Exploring the Nonlinear Relationship between Renewable Energy Consumption and Economic Growth in the Context of Global Climate Change," IJERPH, MDPI, vol. 19(23), pages 1-17, November.
    19. Xiuqin Zhang & Xudong Shi & Yasir Khan & Majid Khan & Saba Naz & Taimoor Hassan & Chenchen Wu & Tahir Rahman, 2023. "The Impact of Energy Intensity, Energy Productivity and Natural Resource Rents on Carbon Emissions in Morocco," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    20. Yannan Liu & Cheng-Hao Liu & Tushar Debnath & Yong Wang & Darius Pohl & Lucas V. Besteiro & Debora Motta Meira & Shengyun Huang & Fan Yang & Bernd Rellinghaus & Mohamed Chaker & Dmytro F. Perepichka &, 2023. "Silver nanoparticle enhanced metal-organic matrix with interface-engineering for efficient photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124018858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.