IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018640.html
   My bibliography  Save this article

Performance evaluation of different photovoltaic array configurations under partial shading

Author

Listed:
  • Verma, Ravikant
  • Gupta, Shubhrata
  • Yadav, Anamika

Abstract

In Partial Shading Conditions (PSCs), Photo Voltaic (PV) systems often experience notable output power and efficiency reductions due to weather variations. This study is dedicated to determining the most effective PV array configuration under partial shading. Various configurations, including Series Parallel (SP), Total Cross Tied (TCT), Bridge Linked (BL), Honey Comb (HC), Double Tied (DT), and hybrid connections, are simulated and evaluated under PSCs. Nine shading patterns, such as vertical, horizontal, centre-wise, upper triangular, cross-wise, expansive, arbitrary, L-shaped, and diagonal, are examined using a 6 × 6 array of PV Configuration. Performance analysis is based on parameters such as open circuit voltage (Voc), short circuit current (Isc), Global Maximum Power Point (GMPP), maximum voltage (Vm), maximum current (Im), Fill Factor (FF), Mismatch Loss (ML)/Power Loss (PL), and efficiency (η). Additionally, hybrid configurations like Alternate- Total Cross Tied -Bridge Linked (ALT-TCT-BL), Alternate -Total Cross Tied -Double Tied (ALT-TCT-DT), and Alternate -Total Cross Tied -Triple Tied (ALT-TCT-TT) are investigated and compared with existing configurations. Hybrid configurations with fewer cross-ties are recommended to simplify circuit complexity. MATLAB/Simulink software is employed for simulation, using a Sunpower SPR-E18-295-COM panel. Comparative analysis confirms that hybrid configurations exhibit higher efficiency for various shading patterns than existing configurations, equal or at par with the TCT connection. For eight connections and nine shading scenarios along with zero (no) shading conditions, eighty distinct combinations have been analysed, and on comparative analysis with contemporary work, the optimal output is obtained from the connections considered under PSCs. For all the shading patterns considered, the proposed work fetches maximum efficiency compared to the contemporary work, and it ranges between 13.61 % and 17.84 % for different shading patterns. The maximum value of efficiencies for horizontal, vertical, diagonal, centre-wise, expansive, arbitrary, upper triangular and L-shaped shading patterns is 13.77 %, 17.24 %, 17.84 %, 15.66 %, 13.61 %, 17.21 %,17.35 % and 15.11 % respectively. The hybrid configuration achieves higher efficiency than current methods for all shading patterns and configurations, with improvements in efficiency ranging from 2.1 % to 42.22 % across all cases.

Suggested Citation

  • Verma, Ravikant & Gupta, Shubhrata & Yadav, Anamika, 2024. "Performance evaluation of different photovoltaic array configurations under partial shading," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018640
    DOI: 10.1016/j.renene.2024.121796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.