IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018640.html
   My bibliography  Save this article

Performance evaluation of different photovoltaic array configurations under partial shading

Author

Listed:
  • Verma, Ravikant
  • Gupta, Shubhrata
  • Yadav, Anamika

Abstract

In Partial Shading Conditions (PSCs), Photo Voltaic (PV) systems often experience notable output power and efficiency reductions due to weather variations. This study is dedicated to determining the most effective PV array configuration under partial shading. Various configurations, including Series Parallel (SP), Total Cross Tied (TCT), Bridge Linked (BL), Honey Comb (HC), Double Tied (DT), and hybrid connections, are simulated and evaluated under PSCs. Nine shading patterns, such as vertical, horizontal, centre-wise, upper triangular, cross-wise, expansive, arbitrary, L-shaped, and diagonal, are examined using a 6 × 6 array of PV Configuration. Performance analysis is based on parameters such as open circuit voltage (Voc), short circuit current (Isc), Global Maximum Power Point (GMPP), maximum voltage (Vm), maximum current (Im), Fill Factor (FF), Mismatch Loss (ML)/Power Loss (PL), and efficiency (η). Additionally, hybrid configurations like Alternate- Total Cross Tied -Bridge Linked (ALT-TCT-BL), Alternate -Total Cross Tied -Double Tied (ALT-TCT-DT), and Alternate -Total Cross Tied -Triple Tied (ALT-TCT-TT) are investigated and compared with existing configurations. Hybrid configurations with fewer cross-ties are recommended to simplify circuit complexity. MATLAB/Simulink software is employed for simulation, using a Sunpower SPR-E18-295-COM panel. Comparative analysis confirms that hybrid configurations exhibit higher efficiency for various shading patterns than existing configurations, equal or at par with the TCT connection. For eight connections and nine shading scenarios along with zero (no) shading conditions, eighty distinct combinations have been analysed, and on comparative analysis with contemporary work, the optimal output is obtained from the connections considered under PSCs. For all the shading patterns considered, the proposed work fetches maximum efficiency compared to the contemporary work, and it ranges between 13.61 % and 17.84 % for different shading patterns. The maximum value of efficiencies for horizontal, vertical, diagonal, centre-wise, expansive, arbitrary, upper triangular and L-shaped shading patterns is 13.77 %, 17.24 %, 17.84 %, 15.66 %, 13.61 %, 17.21 %,17.35 % and 15.11 % respectively. The hybrid configuration achieves higher efficiency than current methods for all shading patterns and configurations, with improvements in efficiency ranging from 2.1 % to 42.22 % across all cases.

Suggested Citation

  • Verma, Ravikant & Gupta, Shubhrata & Yadav, Anamika, 2024. "Performance evaluation of different photovoltaic array configurations under partial shading," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018640
    DOI: 10.1016/j.renene.2024.121796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018640
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potnuru, Srinivasa Rao & Pattabiraman, Dinesh & Ganesan, Saravana Ilango & Chilakapati, Nagamani, 2015. "Positioning of PV panels for reduction in line losses and mismatch losses in PV array," Renewable Energy, Elsevier, vol. 78(C), pages 264-275.
    2. Haidar Islam & Saad Mekhilef & Noraisyah Binti Mohamed Shah & Tey Kok Soon & Mehdi Seyedmahmousian & Ben Horan & Alex Stojcevski, 2018. "Performance Evaluation of Maximum Power Point Tracking Approaches and Photovoltaic Systems," Energies, MDPI, vol. 11(2), pages 1-24, February.
    3. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    4. Yadav, Vinod Kumar & Yadav, Abhishek & Yadav, Ranjana & Mittal, Aaradhya & Wazir, Nadeem Hussain & Gupta, Shubham & Pachauri, Rupendra Kumar & Ghosh, Santosh, 2022. "A novel reconfiguration technique for improvement of PV reliability," Renewable Energy, Elsevier, vol. 182(C), pages 508-520.
    5. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    6. Seyedmahmoudian, M. & Horan, B. & Soon, T. Kok & Rahmani, R. & Than Oo, A. Muang & Mekhilef, S. & Stojcevski, A., 2016. "State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 435-455.
    7. Yousri, Dalia & Babu, Thanikanti Sudhakar & Pachauri, Rupendra Kumar & Zeineldin, Hatem & El-Saadany, Ehab F., 2024. "A novel argyle puzzle for partial shading effect mitigation with experimental validation," Renewable Energy, Elsevier, vol. 225(C).
    8. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda, 2019. "Improvement of partial shading resilience of PV array though modified bypass arrangement," Renewable Energy, Elsevier, vol. 143(C), pages 1079-1093.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fathy, Ahmed & Yousri, Dalia & Babu, Thanikanti Sudhakar & Rezk, Hegazy, 2023. "Triple X Sudoku reconfiguration for alleviating shading effect on total-cross-tied PV array," Renewable Energy, Elsevier, vol. 204(C), pages 593-604.
    2. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    3. Mehdi Seyedmahmoudian & Gokul Sidarth Thirunavukkarasu & Elmira Jamei & Tey Kok Soon & Ben Horan & Saad Mekhilef & Alex Stojcevski, 2020. "A Sustainable Distributed Building Integrated Photo-Voltaic System Architecture with a Single Radial Movement Optimization Based MPPT Controller," Sustainability, MDPI, vol. 12(16), pages 1-21, August.
    4. Jian Zhao & Xuesong Zhou & Youjie Ma & Yiqi Liu, 2017. "Analysis of Dynamic Characteristic for Solar Arrays in Series and Global Maximum Power Point Tracking Based on Optimal Initial Value Incremental Conductance Strategy under Partially Shaded Conditions," Energies, MDPI, vol. 10(1), pages 1, January.
    5. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    6. Liu, Yang & Sun, Kangwen & Lv, Mingyun, 2024. "Mission-oriented dynamic reconfiguration of airborne photovoltaic array based on multidisciplinary model," Renewable Energy, Elsevier, vol. 234(C).
    7. Khaled Osmani & Ahmad Haddad & Mohammad Alkhedher & Thierry Lemenand & Bruno Castanier & Mohamad Ramadan, 2023. "A Novel MPPT-Based Lithium-Ion Battery Solar Charger for Operation under Fluctuating Irradiance Conditions," Sustainability, MDPI, vol. 15(12), pages 1-31, June.
    8. Ko, Suk Whan & Ju, Young Chul & Hwang, Hye Mi & So, Jung Hun & Jung, Young-Seok & Song, Hyung-Jun & Song, Hee-eun & Kim, Soo-Hyun & Kang, Gi Hwan, 2017. "Electric and thermal characteristics of photovoltaic modules under partial shading and with a damaged bypass diode," Energy, Elsevier, vol. 128(C), pages 232-243.
    9. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    10. Mehedi, I.M. & Salam, Z. & Ramli, M.Z. & Chin, V.J. & Bassi, H. & Rawa, M.J.H. & Abdullah, M.P., 2021. "Critical evaluation and review of partial shading mitigation methods for grid-connected PV system using hardware solutions: The module-level and array-level approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Balamurugan, M. & Sahoo, Sarat Kumar & Sukchai, Sukruedee, 2017. "Application of soft computing methods for grid connected PV system: A technological and status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1493-1508.
    12. Yadav, Vinod Kumar & Behera, Anwesh Devratna & Singh, Ranjeet & Maheshwari, Anubhav & Ghosh, Santosh & Prakash, Abhijeet, 2023. "A novel PV array reconfiguration technique based on circular array data structure," Energy, Elsevier, vol. 283(C).
    13. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    14. Aranzazu D. Martin & Juan M. Cano & Reyes S. Herrera & Jesus R. Vazquez, 2019. "Wireless Sliding MPPT Control of Photovoltaic Systems in Distributed Generation Systems," Energies, MDPI, vol. 12(17), pages 1-16, August.
    15. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    16. Shuhao Chang & Qiancheng Wang & Haihua Hu & Zijian Ding & Hansen Guo, 2018. "An NNwC MPPT-Based Energy Supply Solution for Sensor Nodes in Buildings and Its Feasibility Study," Energies, MDPI, vol. 12(1), pages 1-20, December.
    17. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    18. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    19. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    20. Boscaino, Valeria & Ditta, Vito & Marsala, Giuseppe & Panzavecchia, Nicola & Tinè, Giovanni & Cosentino, Valentina & Cataliotti, Antonio & Di Cara, Dario, 2024. "Grid-connected photovoltaic inverters: Grid codes, topologies and control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.