IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124009753.html
   My bibliography  Save this article

Biochar enhanced anaerobic co-digestion of poultry litter and wheat straw: Performance, microbial analysis, and multiple factors’ interaction

Author

Listed:
  • Zhan, Yuanhang
  • Zuo, Bin
  • Cao, Xiaoxia
  • Xiao, Yiting
  • Zhu, Jun

Abstract

Amendment of anaerobic co-digestion (Co-AD) of poultry litter (PL) and agricultural straw using biochar has rarely been practiced. This study conducted two sequential experiments to evaluate the effect of adding alkaline biochar on improving the batch Co-AD of PL and wheat straw. The feasibility experiment identified the advantages of adding biochar by the improved observed cumulative methane yield (CMYo, mL CH4/g VSsubstrate) of 9.7%; the increased removal rates of the substrate total solids (TSsubstrate) and volatile solids (VSsubstrate) of 15.2% and 14.2%, respectively; the enhanced abundance of both hydrolytic bacteria and methanogens, including hydrogegenotrophic Methanobacterium and, especially, the acetolactic Methanosaeta; and the 37.3% higher abundance of the methanogenic pathways, compared to the control. The interaction experiment showed that biochar dosage (BD) interacted with the initial substrate carbon-to-nitrogen ratio (C/N) and total solids level (TS). The developed mathematical models for CMYo and VSsubstrate removal by response surface methodology were significant, which predicted the optimal conditions being initial substrate C/N ratio 29.93 and TS 6.98%, and BD 9.98% substrate. The optimized CMYo and VSsubstrate removal were 17.7% and 22.1% higher, respectively, than those of the Control. These results support the utilization of biochar in improving the Co-AD of agricultural wastes.

Suggested Citation

  • Zhan, Yuanhang & Zuo, Bin & Cao, Xiaoxia & Xiao, Yiting & Zhu, Jun, 2024. "Biochar enhanced anaerobic co-digestion of poultry litter and wheat straw: Performance, microbial analysis, and multiple factors’ interaction," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009753
    DOI: 10.1016/j.renene.2024.120907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009753
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    2. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    3. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    4. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    5. Zhan, Yuanhang & Zhu, Jun, 2024. "Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion," Applied Energy, Elsevier, vol. 355(C).
    6. Wang, Jianfeng & Zhao, Zhiqiang & Zhang, Yaobin, 2021. "Enhancing anaerobic digestion of kitchen wastes with biochar: Link between different properties and critical mechanisms of promoting interspecies electron transfer," Renewable Energy, Elsevier, vol. 167(C), pages 791-799.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    2. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Muhammad U. Khan & Muhammad Ahmad & Muhammad Sultan & Ihsanullah Sohoo & Prakash C. Ghimire & Azlan Zahid & Abid Sarwar & Muhammad Farooq & Uzair Sajjad & Peyman Abdeshahian & Maryam Yousaf, 2021. "Biogas Production Potential from Livestock Manure in Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    6. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Zhan, Yuanhang & Zhu, Jun, 2024. "Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion," Applied Energy, Elsevier, vol. 355(C).
    8. Roy Barman, Dipradidhiti & Bhattacharjee, Subhadeep & Rajak, Somen, 2024. "Analysis of an anaerobically digested animal waste-based microturbine driven-biogas energy system," Renewable Energy, Elsevier, vol. 234(C).
    9. Zhan, Yuanhang & Zhu, Jun & Schrader, Leland C. & Wang, Dongyi, 2023. "Modeling and optimization of bioenergy production from co-digestion of poultry litter with wheat straw in anaerobic sequencing batch reactor: Response surface methodology and artificial neural network," Applied Energy, Elsevier, vol. 345(C).
    10. Hynek Roubík & Jana Mazancová & Phung Le Dinh & Dung Dinh Van & Jan Banout, 2018. "Biogas Quality across Small-Scale Biogas Plants: A Case of Central Vietnam," Energies, MDPI, vol. 11(7), pages 1-12, July.
    11. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    12. Sun, Jianlong & Bai, Bin & Yu, Xinyue & Wang, Yujie & Zhou, Weihong & Jin, Hui, 2024. "Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics," Energy, Elsevier, vol. 307(C).
    13. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    14. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    15. Mboumboue, Edouard & Njomo, Donatien, 2016. "Potential contribution of renewables to the improvement of living conditions of poor rural households in developing countries: Cameroon׳s case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 266-279.
    16. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Effect of the Addition of a Fat Emulsifier on the Amount and Quality of the Obtained Biogas," Energies, MDPI, vol. 13(7), pages 1-12, April.
    17. Wang, Xuezhi & Lei, Zhongfang & Shimizu, Kazuya & Zhang, Zhenya & Lee, Duu-Jong, 2021. "Recent advancements in nanobubble water technology and its application in energy recovery from organic solid wastes towards a greater environmental friendliness of anaerobic digestion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    19. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    20. Seman, S.Z.A. & Idris, I. & Abdullah, A. & Shamsudin, I.K. & Othman, M.R., 2019. "Optimizing purity and recovery of biogas methane enrichment process in a closed landfill," Renewable Energy, Elsevier, vol. 131(C), pages 1117-1127.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.