IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005469.html
   My bibliography  Save this article

Modeling sustainable bioethanol supply chain in Australia: A system dynamics approach

Author

Listed:
  • Taheri, Nima
  • Jahani, Hamed
  • Pishvaee, Mir Saman

Abstract

The growing energy demand and concerns over fossil fuel consumption underscore the need for a shift to renewable energies and biofuels. Concurrently, the rising global population and increased biofuel demand strain the food supply system, requiring enhanced production capabilities. By using a system dynamics model, this study investigates the intricate relationship between bioethanol production and food security in Australia, emphasizing the essential balance for a sustainable bioethanol supply chain. The research explores the interplay among population, food supply, and energy supply subsystems, projecting diverse bioethanol production scenarios until 2050. Findings reveal constraints within the Australian bioethanol supply chain, with current capacity meeting demand at a 1.5 % bioethanol blend rate to gasoline. However, surpassing 3.4 % demands significant capacity expansions incurring substantial costs. At a 5 % blend rate, it is imperative to augment the production capacity to 1275 million liters of bioethanol by 2050. The study underscores the limitations of relying on sorghum for bioethanol production, emphasizing the strategic need to embrace alternative sources such as wheat starch waste and molasses. Addressing the challenge of supplying sufficient food for consumption and energy production, our research advocates for a shift towards fuels produced without edible resources. These insights are vital for policymakers and industry stakeholders, contributing to the understanding of complexities in establishing a sustainable bioethanol industry while ensuring food security and environmental sustainability.

Suggested Citation

  • Taheri, Nima & Jahani, Hamed & Pishvaee, Mir Saman, 2024. "Modeling sustainable bioethanol supply chain in Australia: A system dynamics approach," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005469
    DOI: 10.1016/j.renene.2024.120481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.
    2. Hamid Ghaderi & Hossein Gitinavard & Mir Saman Pishvaee, 2020. "A system dynamics approach to analysing bioethanol and biodiesel supply chains: increasing bioethanol and biodiesel market shares in the USA," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 16(1), pages 57-84.
    3. Nonhebel, Sanderine, 2005. "Renewable energy and food supply: will there be enough land?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(2), pages 191-201, April.
    4. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    5. Chang, Lei & Qian, Chong & Dilanchiev, Azer, 2022. "Nexus between financial development and renewable energy: Empirical evidence from nonlinear autoregression distributed lag," Renewable Energy, Elsevier, vol. 193(C), pages 475-483.
    6. Giarola, Sara & Zamboni, Andrea & Bezzo, Fabrizio, 2012. "Environmentally conscious capacity planning and technology selection for bioethanol supply chains," Renewable Energy, Elsevier, vol. 43(C), pages 61-72.
    7. Roubík, Hynek & Mazancová, Jana & Rydval, Jan & Kvasnička, Roman, 2020. "Uncovering the dynamic complexity of the development of small–scale biogas technology through causal loops," Renewable Energy, Elsevier, vol. 149(C), pages 235-243.
    8. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    9. Kumar, Ipsita & Feng, Kuishuang & Sun, Laixiang & Bandaru, Varaprasad, 2022. "Adoption of biomass for electricity generation in Thailand: Implications for energy security, employment, environment, and land use change," Renewable Energy, Elsevier, vol. 195(C), pages 1454-1467.
    10. Aral, Mustafa M., 2020. "Knowledge based analysis of continental population and migration dynamics," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    11. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    12. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    13. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    14. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    15. E. Savku & G.-W Weber, 2022. "Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market," Annals of Operations Research, Springer, vol. 312(2), pages 1171-1196, May.
    16. Cobuloglu, Halil I. & Büyüktahtakın, İ. Esra, 2015. "Food vs. biofuel: An optimization approach to the spatio-temporal analysis of land-use competition and environmental impacts," Applied Energy, Elsevier, vol. 140(C), pages 418-434.
    17. Cruz Jr., Jose B. & Tan, Raymond R. & Culaba, Alvin B. & Ballacillo, Jo-Anne, 2009. "A dynamic input-output model for nascent bioenergy supply chains," Applied Energy, Elsevier, vol. 86(Supplemen), pages 86-94, November.
    18. Yazdanparast, R. & Jolai, F. & Pishvaee, M.S. & Keramati, A., 2022. "A resilient drop-in biofuel supply chain integrated with existing petroleum infrastructure: Toward more sustainable transport fuel solutions," Renewable Energy, Elsevier, vol. 184(C), pages 799-819.
    19. Liu, Ximei & Zeng, Ming, 2017. "Renewable energy investment risk evaluation model based on system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 782-788.
    20. Hong, Jae-Dong & Mwakalonge, Judith L., 2020. "Biofuel logistics network scheme design with combined data envelopment analysis approach," Energy, Elsevier, vol. 209(C).
    21. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    22. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    23. Bayrakci Ozdingis, Asiye Gul & Kocar, Gunnur, 2018. "Current and future aspects of bioethanol production and utilization in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2196-2203.
    24. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
    25. Jahani, Hamed & Gholizadeh, Hadi & Hayati, Zahra & Fazlollahtabar, Hamed, 2023. "Investment risk assessment of the biomass-to-energy supply chain using system dynamics," Renewable Energy, Elsevier, vol. 203(C), pages 554-567.
    26. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    27. Betül Kalaycı & Ayşe Özmen & Gerhard-Wilhelm Weber, 2020. "Mutual relevance of investor sentiment and finance by modeling coupled stochastic systems with MARS," Annals of Operations Research, Springer, vol. 295(1), pages 183-206, December.
    28. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    29. Rizzi, Francesco & van Eck, Nees Jan & Frey, Marco, 2014. "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, Elsevier, vol. 62(C), pages 657-671.
    30. Soheyl Khalilpourazari & Shima Soltanzadeh & Gerhard-Wilhelm Weber & Sankar Kumar Roy, 2020. "Designing an efficient blood supply chain network in crisis: neural learning, optimization and case study," Annals of Operations Research, Springer, vol. 289(1), pages 123-152, June.
    31. Fang, Wei & Liu, Zhen & Surya Putra, Ahmad Romadhoni, 2022. "Role of research and development in green economic growth through renewable energy development: Empirical evidence from South Asia," Renewable Energy, Elsevier, vol. 194(C), pages 1142-1152.
    32. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    33. Özmen, Ayşe & Yılmaz, Yavuz & Weber, Gerhard-Wilhelm, 2018. "Natural gas consumption forecast with MARS and CMARS models for residential users," Energy Economics, Elsevier, vol. 70(C), pages 357-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    2. Cabrera-Jiménez, Richard & Mateo-Sanz, Josep M. & Gavaldà, Jordi & Jiménez, Laureano & Pozo, Carlos, 2022. "Comparing biofuels through the lens of sustainability: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 307(C).
    3. Judit Oláh & Eszter Krisán & Anna Kiss & Zoltán Lakner & József Popp, 2020. "PRISMA Statement for Reporting Literature Searches in Systematic Reviews of the Bioethanol Sector," Energies, MDPI, vol. 13(9), pages 1-35, May.
    4. Xu, Xiaoxiao & Yu, Hao & Sun, Qiuwen & Tam, Vivian W.Y., 2023. "A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    7. Peipei, Wang & Eyvazov, Elchin & Giyasova, Zeynab & Kazimova, Asli, 2023. "The nexus between natural resource rents and financial wealth on economic recovery: Evidence from European Union economies," Resources Policy, Elsevier, vol. 82(C).
    8. Pradhan, Anup & Mbohwa, Charles, 2014. "Development of biofuels in South Africa: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1089-1100.
    9. Moncada, J.A. & Lukszo, Z. & Junginger, M. & Faaij, A. & Weijnen, M., 2017. "A conceptual framework for the analysis of the effect of institutions on biofuel supply chains," Applied Energy, Elsevier, vol. 185(P1), pages 895-915.
    10. Marko M. Mihić & Zorica A. Dodevska & Marija Lj. Todorović & Vladimir Lj. Obradović & Dejan Č. Petrović, 2018. "Reducing Risks in Energy Innovation Projects: Complexity Theory Perspective," Sustainability, MDPI, vol. 10(9), pages 1-24, August.
    11. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.
    12. Ayşe Özmen & Yuriy Zinchenko & Gerhard-Wilhelm Weber, 2023. "Robust multivariate adaptive regression splines under cross-polytope uncertainty: an application in a natural gas market," Annals of Operations Research, Springer, vol. 324(1), pages 1337-1367, May.
    13. Xia, Yu, 2023. "Role of stock market return and natural resources utilisation on green economic development: Empirical evidence from China," Resources Policy, Elsevier, vol. 81(C).
    14. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Qiu, Kai & Liu, Chunli & Li, Ying, 2023. "The effect of natural resource utilization efficency, financial development for the economic development In Asian Countries," Resources Policy, Elsevier, vol. 86(PA).
    16. Bukhary, Saria & Ahmad, Sajjad & Batista, Jacimaria, 2018. "Analyzing land and water requirements for solar deployment in the Southwestern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3288-3305.
    17. Xu, Zilin & Mohsin, Muhammad & Ullah, Kaleem & Ma, Xiaoyu, 2023. "Using econometric and machine learning models to forecast crude oil prices: Insights from economic history," Resources Policy, Elsevier, vol. 83(C).
    18. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    19. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    20. Hasan, Atiye Haj & Avami, Akram, 2018. "Water and emissions nexus for biodiesel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 354-363.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.