IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005160.html
   My bibliography  Save this article

Wind incidence and pedestal height effect on the flow behaviour and aerodynamic loading on a stand-alone solar parabolic dish

Author

Listed:
  • Graham, Philip
  • Fadlallah, Sulaiman O.
  • Boulbrachene, Khaled

Abstract

Parabolic dish concentrators (PDCs) exhibit superior efficiencies compared to other concentrating solar power systems, positioning them as the preferred renewable electricity generation technology. However, their high costs hinder the technology's development, compelling the industry to explore innovative cost-effective designs integrating lightweight composites. However, PDC manufacturers encounter challenges ensuring these designs can withstand the aerodynamic forces imposed on them. These challenges are intensified by the limited characterization of aerodynamic loading, often reliant on simplified geometry, fixed pedestal heights, or low-resolution data, overlooking wind incidence and height impacts. Hence, an investigation into wind incidence effect at varying tilt angles and pedestal heights was conducted using computational fluid dynamics. ANSYS/FLUENT was utilized for three-dimensional analysis of fluid flow over a developed detailed PDC model, incorporating key components not previously studied together. 90° to −90° tilt angles and 0°–90° wind incidences were investigated in 15° increments, considering various pedestal heights. The analysis demonstrated that tilt and wind incidence significantly affected the aerodynamic coefficients. The pedestal height significantly affected the base overturning moment results while also affecting the hinge moment at higher incidence values. Furthermore, wind incidence and pedestal height variations distinctly influenced the airflow field around the PDC, revealing different behavioural characteristics. Alongside providing an improved aerodynamic coefficients' characterization than previously offered, correlations relating those coefficients to the PDC's orientation and height were derived, providing an analytical tool for designers to determine wind loads on PDCs, assess structural forces and moments on the PDC's key components, and enhance cost-effective PDC development, thereby advancing their widespread commercial use.

Suggested Citation

  • Graham, Philip & Fadlallah, Sulaiman O. & Boulbrachene, Khaled, 2024. "Wind incidence and pedestal height effect on the flow behaviour and aerodynamic loading on a stand-alone solar parabolic dish," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005160
    DOI: 10.1016/j.renene.2024.120451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christo, Farid C., 2012. "Numerical modelling of wind and dust patterns around a full-scale paraboloidal solar dish," Renewable Energy, Elsevier, vol. 39(1), pages 356-366.
    2. Zuo, Hongyan & Tan, Jiqiu & Wei, Kexiang & Huang, Zhonghua & Zhong, Dingqing & Xie, Fuchun, 2021. "Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system," Renewable Energy, Elsevier, vol. 168(C), pages 1308-1326.
    3. Peinado Gonzalo, Alfredo & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2019. "A review of the application performances of concentrated solar power systems," Applied Energy, Elsevier, vol. 255(C).
    4. Tsoutsos, Theocharis & Gekas, Vasilis & Marketaki, Katerina, 2003. "Technical and economical evaluation of solar thermal power generation," Renewable Energy, Elsevier, vol. 28(6), pages 873-886.
    5. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.
    6. Afshari, Faraz & Zavaragh, Hadi Ghasemi & Sahin, Bayram & Grifoni, Roberta Cocci & Corvaro, Francesco & Marchetti, Barbara & Polonara, Fabio, 2018. "On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 152(C), pages 51-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Wind load and load-carrying optical performance of a large solar dish/stirling power system with 17.7 m diameter," Energy, Elsevier, vol. 283(C).
    2. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    3. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    4. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    5. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    6. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    7. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    8. Sharma, Chandan & Sharma, Ashish K. & Mullick, Subhash C. & Kandpal, Tara C., 2015. "Assessment of solar thermal power generation potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 902-912.
    9. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    10. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    12. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    13. Ma, Ying & Yang, Heng & Zuo, Hongyan & Zuo, Qingsong & He, Xiaoxiang & Chen, Wei & Wei, Rongrong, 2023. "EG@Bi-MOF derived porous carbon/lauric acid composite phase change materials for thermal management of batteries," Energy, Elsevier, vol. 272(C).
    14. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).
    15. Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
    16. Krystian Czernek & Stanisław Witczak, 2020. "Precise Determination of Liquid Layer Thickness with Downward Annular Two-Phase Gas-Very Viscous Liquid Flow," Energies, MDPI, vol. 13(24), pages 1-17, December.
    17. Sairam, Seshapalli & Seshadhri, Subathra & Marafioti, Giancarlo & Srinivasan, Seshadhri & Mathisen, Geir & Bekiroglu, Korkut, 2022. "Edge-based Explainable Fault Detection Systems for photovoltaic panels on edge nodes," Renewable Energy, Elsevier, vol. 185(C), pages 1425-1440.
    18. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    19. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    20. Cai, Tao & Zhao, Dan & Sun, Yuze & Ni, Siliang & Li, Weixuan & Guan, Di & Wang, Bing, 2021. "Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.