IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics096014812400288x.html
   My bibliography  Save this article

Interface engineering of BiVO4/Zn3V2O8 heterocatalysts for escalating the synergism: Impact of Cu electron mediator for overall water splitting

Author

Listed:
  • Abid, Muhammad Zeeshan
  • Rafiq, Khezina
  • Rauf, Abdul
  • Althomali, Raed H.
  • Jin, Rongchao
  • Hussain, Ejaz

Abstract

The risk of global warming is increasing due to excessive consumption of fossil fuels. To fill the gap between production and consumption of conventional energy sources, modern societies are searching green and renewable alternatives. In this work, BiVO4/Zn3V2O8 heterocatalysts were synthesized and interfacially engineered for overall water splitting reactions. To obtain the structural and interfacial morphologies, catalysts were characterized by XRD, FTIR, Raman spectroscopy, SEM and AFM techniques. The optical and chemical characteristics of as-synthesized catalysts were evaluated using UV–Vis/DRS, PL, EIS, EDX, XPS and BET analysis. The role of Cu metal, synergism between BiVO4/Zn3V2O8 and mechanistic approaches were further revealed. The results depict that Cu metal exceptionally compete to sustain the synergism as an electron mediator source. The synergistic effect and electron mediator were found as key factors to boost the overall water splitting efficiencies. Due to interfacial engineering of BiVO4/Zn3V2O8 system, charge transfer becomes more feasible for the redox reactions (i.e. water splitting). It was examined that due to presence of Cu metal, rate of overall water splitting reaction was higher than the catalysts having no mediator (i.e. absence of Cu). During photoreaction, two successive rates for H2 and O2 evolution were speculated 17.66 and 8.96 mmol g−1 h−1, respectively which delivers approximately 5.04 kJ g−1 h−1 energy. On the basis of results and activities, it could be concluded that, this research will exhibit exceptional potential and hold promise of an ultimate transition to the water splitting and green energy technologies.

Suggested Citation

  • Abid, Muhammad Zeeshan & Rafiq, Khezina & Rauf, Abdul & Althomali, Raed H. & Jin, Rongchao & Hussain, Ejaz, 2024. "Interface engineering of BiVO4/Zn3V2O8 heterocatalysts for escalating the synergism: Impact of Cu electron mediator for overall water splitting," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400288x
    DOI: 10.1016/j.renene.2024.120223
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812400288X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu Zhang & Wenying Chen, 2022. "Assessing the energy transition in China towards carbon neutrality with a probabilistic framework," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Raihan, Asif, 2023. "Toward sustainable and green development in Chile: Dynamic influences of carbon emission reduction variables," Innovation and Green Development, Elsevier, vol. 2(2).
    3. Sher Khan & Muhammad Tariq Majeed, 2023. "Toward economic growth without emissions growth: the role of urbanization & industrialization in Pakistan," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(1), pages 43-58, March.
    4. Ashkan Bahadoran & Qinglei Liu & Seeram Ramakrishna & Behzad Sadeghi & Moara Marques De Castro & Pasquale Daniele Cavaliere, 2022. "Hydrogen Production as a Clean Energy Carrier through Heterojunction Semiconductors for Environmental Remediation," Energies, MDPI, vol. 15(9), pages 1-30, April.
    5. Ren, Xiaohang & Li, Jingyao & He, Feng & Lucey, Brian, 2023. "Impact of climate policy uncertainty on traditional energy and green markets: Evidence from time-varying granger tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahakwa, Isaac & Tackie, Evelyn Agba & Tackie, Faustina Korkor & Mangudhla, Tinashe & Baig, Jibal & Islam, Sartaj ul & Sarpong, Francis Atta, 2024. "Greening the path to carbon neutrality in the post-COP26 era: Embracing green energy, green innovation, and green human capital," Innovation and Green Development, Elsevier, vol. 3(3).
    2. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    3. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    4. Agostino, Mariarosaria, 2024. "Extreme weather events and firms’ energy practices. The role of country governance," Energy Policy, Elsevier, vol. 192(C).
    5. Yang, Yi & Zhu, Yu & Zhao, Yiwen, 2024. "Improving farmers’ livelihoods through the eco-compensation of forest carbon sinks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Ren, Xiaohang & Zeng, Gudian & Zhao, Yang, 2023. "Digital finance and corporate ESG performance: Empirical evidence from listed companies in China," Pacific-Basin Finance Journal, Elsevier, vol. 79(C).
    7. He, Feng & Guo, Xinyao & Yue, Pengpeng, 2024. "Media coverage and corporate ESG performance: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 91(C).
    8. Ongsakul, Viput & Papangkorn, Suwongrat & Jiraporn, Pornsit, 2023. "Estimating the effect of climate change exposure on firm value using climate policy uncertainty: A text-based approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 40(C).
    9. Duan, Kun & Ren, Xiaohang & Wen, Fenghua & Chen, Jinyu, 2023. "Evolution of the information transmission between Chinese and international oil markets: A quantile-based framework," Journal of Commodity Markets, Elsevier, vol. 29(C).
    10. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Chen, Yanhua & Sharma, Aarzoo, 2024. "How much does climate-related risk impact stock and commodity markets: A comparative study of the US and China," Finance Research Letters, Elsevier, vol. 62(PA).
    12. Wang, Hao-ran & Feng, Tian-tian & Zhong, Cheng, 2023. "Effectiveness of CO2 cost pass-through to electricity prices under “electricity-carbon” market coupling in China," Energy, Elsevier, vol. 266(C).
    13. Ren, Xiaohang & An, Yaning & Jin, Chenglu & Yan, Cheng, 2024. "Weathering the policy storm: How climate strategy volatility shapes corporate total factor productivity," Energy Economics, Elsevier, vol. 134(C).
    14. Han, Yongming & Cao, Lian & Guo, Qing & Geng, Zhiqiang & Yang, Weiyang & Fan, Jinzhen & Liu, Min, 2024. "Economy and carbon dioxide emissions effects of energy structures in China: Evidence based on a novel AHP-SBMDEA model," Energy, Elsevier, vol. 290(C).
    15. Chunhua Lu & Hong Li, 2023. "Have China’s Regional Carbon Emissions Trading Schemes Promoted Industrial Resource Allocation Efficiency? The Evidence from Heavily Polluted Industries at the Provincial Level," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    16. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    17. Yu, Bolin & Fang, Debin & Xiao, Kun & Pan, Yuling, 2023. "Drivers of renewable energy penetration and its role in power sector's deep decarbonization towards carbon peak," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Zhang, Yun-Long & Kang, Jia-Ning & Liu, Lan-Cui & Wei, Yi-Ming, 2024. "Unveiling the evolution and future prospects: A comprehensive review of low-carbon transition in the coal power industry," Applied Energy, Elsevier, vol. 371(C).
    19. Niu, Hongli & Hu, Wenwen, 2024. "Static and dynamic interdependencies among natural gas, stocks of global major economies and uncertainty," Resources Policy, Elsevier, vol. 94(C).
    20. Zheng, Shunlin & Qi, Qi & Sun, Yi & Ai, Xin, 2023. "Integrated demand response considering substitute effect and time-varying response characteristics under incomplete information," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400288x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.