IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v21y2000i3p583-605.html
   My bibliography  Save this article

Spatial estimation of global solar radiation using geostatistics

Author

Listed:
  • Rehman, Shafiqur
  • Ghori, Saleem G

Abstract

The number of radiation data collection stations is limited due to economic reasons. Hence, there is a need for the spatially continuous mapping of solar radiation by estimation. This paper utilizes a geostatistical technique for the estimation of solar radiation in Saudi Arabia. This technique includes five steps: (i) data collection, (ii) univariate analysis, (iii) experimental variogram calculations and model fitting, (iv) estimation using kriging, and (v) plotting contour maps. Variogram models are fitted to measured variograms for each month of the year. Estimates were obtained at 1500 grid points (30 × 50) between a longitude of 36.58°E and 50.00°E, and latitude of 17.17°N and 31.33°N for a grid resolution of 55 × 33 km. These values were used to plot the contour maps of solar radiation for each month of the year. To test the performance of the technique, estimates were obtained at the 41 known locations by systematically excluding one of these points from the known data. The error analysis showed a maximum mean deviation between measured and estimated values of 0.0037 (January) and a minimum of 0.0013 (March and October). The mean percent errors were found to vary between a minimum of 0.5% and a maximum of 1.7%. This technique may be expanded for the spatial estimation of solar radiation on regional and continental scales.

Suggested Citation

  • Rehman, Shafiqur & Ghori, Saleem G, 2000. "Spatial estimation of global solar radiation using geostatistics," Renewable Energy, Elsevier, vol. 21(3), pages 583-605.
  • Handle: RePEc:eee:renene:v:21:y:2000:i:3:p:583-605
    DOI: 10.1016/S0960-1481(00)00078-1
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148100000781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(00)00078-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aksakal, Ahmet & Rehman, Shafiqur, 1999. "Global solar radiation in Northeastern Saudi Arabia," Renewable Energy, Elsevier, vol. 17(4), pages 461-472.
    2. Alnaser, W.E., 1989. "Empirical correlation for total and diffuse radiation in Bahrain," Energy, Elsevier, vol. 14(7), pages 409-414.
    3. Rehman, Shafiqur & Halawani, Talal Omar, 1997. "Global solar radiation estimation," Renewable Energy, Elsevier, vol. 12(4), pages 369-385.
    4. Bashahu, M. & Nkundabakura, P., 1994. "Analysis of daily global irradiation data for five sites in Rwanda and one in Senegal," Renewable Energy, Elsevier, vol. 4(4), pages 425-435.
    5. Jibril, Ziad, 1991. "Estimation of solar radiation over Jordan—predicted tables," Renewable Energy, Elsevier, vol. 1(2), pages 277-291.
    6. Mohandes, M. & Rehman, S. & Halawani, T.O., 1998. "Estimation of global solar radiation using artificial neural networks," Renewable Energy, Elsevier, vol. 14(1), pages 179-184.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
    2. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    3. Sarmiento, Nilsa & Belmonte, Silvina & Dellicompagni, Pablo & Franco, Judith & Escalante, Karina & Sarmiento, Joaquín, 2019. "A solar irradiation GIS as decision support tool for the Province of Salta, Argentina," Renewable Energy, Elsevier, vol. 132(C), pages 68-80.
    4. Pelosi, A. & Chirico, G.B., 2021. "Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?," Agricultural Water Management, Elsevier, vol. 258(C).
    5. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    6. Jawed Mustafa & Shahid Husain & Saeed Alqaed & Uzair Ali Khan & Basharat Jamil, 2022. "Performance of Two Variable Machine Learning Models to Forecast Monthly Mean Diffuse Solar Radiation across India under Various Climate Zones," Energies, MDPI, vol. 15(21), pages 1-32, October.
    7. Jeong, D.I. & St-Hilaire, A. & Gratton, Y. & Bélanger, C. & Saad, C., 2017. "A guideline to select an estimation model of daily global solar radiation between geostatistical interpolation and stochastic simulation approaches," Renewable Energy, Elsevier, vol. 103(C), pages 70-80.
    8. Bessafi, Miloud & Oree, Vishwamitra & Khoodaruth, Abdel & Chabriat, Jean-Pierre, 2020. "Impact of decomposition and kriging models on the solar irradiance downscaling accuracy in regions with complex topography," Renewable Energy, Elsevier, vol. 162(C), pages 1992-2003.
    9. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    10. Jamil, Basharat & Akhtar, Naiem, 2017. "Estimation of diffuse solar radiation in humid-subtropical climatic region of India: Comparison of diffuse fraction and diffusion coefficient models," Energy, Elsevier, vol. 131(C), pages 149-164.
    11. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    12. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    13. Antonanzas-Torres, F. & Cañizares, F. & Perpiñán, O., 2013. "Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 248-261.
    14. Jing, Yifan & Zhu, Li & Yin, Baoquan & Li, Fangfang, 2023. "Evaluating the PV system expansion potential of existing integrated energy parks: A case study in North China," Applied Energy, Elsevier, vol. 330(PA).
    15. Zagouras, Athanassios & Kolovos, Alexander & Coimbra, Carlos F.M., 2015. "Objective framework for optimal distribution of solar irradiance monitoring networks," Renewable Energy, Elsevier, vol. 80(C), pages 153-165.
    16. Walch, Alina & Castello, Roberto & Mohajeri, Nahid & Scartezzini, Jean-Louis, 2020. "Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty," Applied Energy, Elsevier, vol. 262(C).
    17. Muhammad Isma'il, 2014. "Geographical Information System (GIS): A Critical Tool for Energy Science Analysis," Asian Bulletin of Energy Economics and Technology, Asian Online Journal Publishing Group, vol. 1(1), pages 13-16.
    18. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehman, Shafiqur & Bader, Maher A. & Al-Moallem, Said A., 2007. "Cost of solar energy generated using PV panels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1843-1857, October.
    2. Islam, M.D. & Kubo, I. & Ohadi, M. & Alili, A.A., 2009. "Measurement of solar energy radiation in Abu Dhabi, UAE," Applied Energy, Elsevier, vol. 86(4), pages 511-515, April.
    3. Khan, Meer A.M. & Rehman, S. & Al-Sulaiman, Fahad A., 2018. "A hybrid renewable energy system as a potential energy source for water desalination using reverse osmosis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 456-477.
    4. El Chaar, Lana & Lamont, Lisa A., 2010. "Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 35(7), pages 1596-1601.
    5. Islam, M.D. & Alili, A.A. & Kubo, I. & Ohadi, M., 2010. "Measurement of solar-energy (direct beam radiation) in Abu Dhabi, UAE," Renewable Energy, Elsevier, vol. 35(2), pages 515-519.
    6. Hepbasli, Arif & Alsuhaibani, Zeyad, 2011. "A key review on present status and future directions of solar energy studies and applications in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5021-5050.
    7. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    8. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    9. Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
    10. Alnaser, W.E. & Probert, S.D. & El-Masri, S. & Al-Khalifa, S.E. & Flanagan, R. & Alnaser, N.W., 2006. "Bahrain's Formula-1 racing circuit: energy and environmental considerations," Applied Energy, Elsevier, vol. 83(4), pages 352-370, April.
    11. Mubiru, J., 2008. "Predicting total solar irradiation values using artificial neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2329-2332.
    12. Al-Soud, Mohammed S. & Hrayshat, Eyad S., 2004. "Rural photovoltaic electrification program in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 593-598, December.
    13. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    14. Hrayshat, Eyad S. & Al-Soud, Mohammed S., 2004. "Potential of solar energy development for water pumping in Jordan," Renewable Energy, Elsevier, vol. 29(8), pages 1393-1399.
    15. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    16. Bachour, D. & Perez-Astudillo, D., 2014. "Ground measurements of Global Horizontal Irradiation in Doha, Qatar," Renewable Energy, Elsevier, vol. 71(C), pages 32-36.
    17. Wan, Kevin K.W. & Tang, H.L. & Yang, Liu & Lam, Joseph C., 2008. "An analysis of thermal and solar zone radiation models using an Angstrom–Prescott equation and artificial neural networks," Energy, Elsevier, vol. 33(7), pages 1115-1127.
    18. Aksakal, Ahmet & Rehman, Shafiqur, 1999. "Global solar radiation in Northeastern Saudi Arabia," Renewable Energy, Elsevier, vol. 17(4), pages 461-472.
    19. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    20. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:21:y:2000:i:3:p:583-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.