IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011795.html
   My bibliography  Save this article

Teaching building towards carbon neutrality: Power matching and economy of source-grid-load-storage system

Author

Listed:
  • He, Yecong
  • Sun, Jie
  • Deng, Qi
  • Zhang, Xiaofeng
  • Liu, Huaican
  • Wen, Ke
  • Zhou, Jifei

Abstract

Air Conditioning is one of the largest uses of energy used in building operations. The combination of photovoltaic power generation and building air-conditioning is one of the important ways to realize building energy savings and emission reduction. In this context, this study uses two software, Design Builder and TRNSYS, to build college teaching buildings and equip them with centralized air conditioning systems and Photovoltaic storage (PV-storage) systems, aiming to explore the electric characteristics of college teaching buildings and the economy of PV-storage system under 36 scenarios. It provides a theoretical reference for the integrated application of centralized air conditioning “PV-storage” in teaching buildings of colleges and universities. The main results show that the system has a strong ability to match the power load, and its solar fraction is between 0.85 and 1.00. The system's payback period (PBP) is short, and the net present value (NPV) is large. Its PBP is 6.09–6.38 years, and the NPV is 2809.47–3017.04 thousand yuan. This teaching building system has a good economy while realizing energy saving and emission reduction through a simulation case study, which shows high potential for applications. In addition, in summer, reducing attendance, reducing classroom utilization (in the semester), and not setting up night self-study can reduce electricity consumption. In winter, increasing attendance, reducing classroom utilization (in the semester), and setting up night self-study can reduce electricity consumption.

Suggested Citation

  • He, Yecong & Sun, Jie & Deng, Qi & Zhang, Xiaofeng & Liu, Huaican & Wen, Ke & Zhou, Jifei, 2023. "Teaching building towards carbon neutrality: Power matching and economy of source-grid-load-storage system," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011795
    DOI: 10.1016/j.renene.2023.119264
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamali, Saeed, 2016. "Feasibility analysis of standalone photovoltaic electrification system in a residential building in Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1279-1284.
    2. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    3. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    4. Hernández, J.C. & Sanchez-Sutil, F. & Muñoz-Rodríguez, F.J., 2019. "Design criteria for the optimal sizing of a hybrid energy storage system in PV household-prosumers to maximize self-consumption and self-sufficiency," Energy, Elsevier, vol. 186(C).
    5. Sun, Xiaoqin & Lin, Yian & Zhu, Ziyang & Li, Jie, 2022. "Optimized design of a distributed photovoltaic system in a building with phase change materials," Applied Energy, Elsevier, vol. 306(PA).
    6. Dietrich, Andreas & Weber, Christoph, 2018. "What drives profitability of grid-connected residential PV storage systems? A closer look with focus on Germany," Energy Economics, Elsevier, vol. 74(C), pages 399-416.
    7. Zhao, B.Y. & Zhao, Z.G. & Li, Y. & Wang, R.Z. & Taylor, R.A., 2019. "An adaptive PID control method to improve the power tracking performance of solar photovoltaic air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Kusakana, Kanzumba, 2020. "Optimal energy management of a grid-connected dual-tracking photovoltaic system with battery storage: Case of a microbrewery under demand response," Energy, Elsevier, vol. 212(C).
    9. Wang, Ruiting & Feng, Wei & Xue, Huijie & Gerber, Daniel & Li, Yutong & Hao, Bin & Wang, Yibo, 2021. "Simulation and power quality analysis of a Loose-Coupled bipolar DC microgrid in an office building," Applied Energy, Elsevier, vol. 303(C).
    10. Zou, Bin & Peng, Jinqing & Yin, Rongxin & Li, Houpei & Li, Sihui & Yan, Jinyue & Yang, Hongxing, 2022. "Capacity configuration of distributed photovoltaic and battery system for office buildings considering uncertainties," Applied Energy, Elsevier, vol. 319(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Fiedler & Joaquin Coll Matas, 2022. "Techno-Economic Analysis of Grid-Connected PV Battery Solutions for Holiday Homes in Sweden," Energies, MDPI, vol. 15(8), pages 1-21, April.
    2. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    3. Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan & Enrico Tironi, 2023. "Optimal Sizing and Environ-Economic Analysis of PV-BESS Systems for Jointly Acting Renewable Self-Consumers," Energies, MDPI, vol. 16(3), pages 1-25, January.
    4. Kotowicz, Janusz & Uchman, Wojciech, 2021. "Analysis of the integrated energy system in residential scale: Photovoltaics, micro-cogeneration and electrical energy storage," Energy, Elsevier, vol. 227(C).
    5. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    6. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    7. Nina Munzke & Felix Büchle & Anna Smith & Marc Hiller, 2021. "Influence of Efficiency, Aging and Charging Strategy on the Economic Viability and Dimensioning of Photovoltaic Home Storage Systems," Energies, MDPI, vol. 14(22), pages 1-46, November.
    8. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    9. Olivier Rebenaque, 2020. "An economic assessment of the residential PV self-consumption support under different network tariffs," Working Papers 2001, Chaire Economie du climat.
    10. Cai, Qiran & Qing, Jing & Xu, Qingyang & Shi, Gang & Liang, Qiao-Mei, 2024. "Techno-economic impact of electricity price mechanism and demand response on residential rooftop photovoltaic integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Nikolas G. Chatzigeorgiou & Spyros Theocharides & George Makrides & George E. Georghiou, 2023. "Evaluating the Techno-Economic Effect of Pricing and Consumption Parameters on the Power-to-Energy Ratio for Sizing Photovoltaic-Battery Systems: An Assessment of Prosumers in the Mediterranean Area," Energies, MDPI, vol. 16(10), pages 1-27, May.
    12. Shaojie Li & Tao Zhang & Xiaochen Liu & Xiaohua Liu, 2023. "A Battery Capacity Configuration Method of a Photovoltaic and Battery System Applied in a Building Complex for Increased Self-Sufficiency and Self-Consumption," Energies, MDPI, vol. 16(5), pages 1-18, February.
    13. Li, Houpei & Li, Jun & Li, Sihui & Peng, Jinqing & Ji, Jie & Yan, Jinyue, 2023. "Matching characteristics and AC performance of the photovoltaic-driven air conditioning system," Energy, Elsevier, vol. 264(C).
    14. Olivier Rebenaque, 2020. "An economic assessment of the residential PV self-consumption support under different network tariffs," Working Papers hal-02511136, HAL.
    15. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    16. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Daniel Fett & Dogan Keles & Thomas Kaschub & Wolf Fichtner, 2019. "Impacts of self-generation and self-consumption on German household electricity prices," Journal of Business Economics, Springer, vol. 89(7), pages 867-891, September.
    18. Angenendt, Georg & Zurmühlen, Sebastian & Axelsen, Hendrik & Sauer, Dirk Uwe, 2018. "Comparison of different operation strategies for PV battery home storage systems including forecast-based operation strategies," Applied Energy, Elsevier, vol. 229(C), pages 884-899.
    19. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    20. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.