Wind power predictions from nowcasts to 4-hour forecasts: A learning approach with variable selection
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.05.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Aurore Dupré & Philippe Drobinski & Jordi Badosa & Christian Briard & Peter Tankov, 2020. "The Economic Value of Wind Energy Nowcasting," Energies, MDPI, vol. 13(20), pages 1-20, October.
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Dupré, Aurore & Drobinski, Philippe & Alonzo, Bastien & Badosa, Jordi & Briard, Christian & Plougonven, Riwal, 2020. "Sub-hourly forecasting of wind speed and wind energy," Renewable Energy, Elsevier, vol. 145(C), pages 2373-2379.
- Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- Han, Yan & Mi, Lihua & Shen, Lian & Cai, C.S. & Liu, Yuchen & Li, Kai & Xu, Guoji, 2022. "A short-term wind speed prediction method utilizing novel hybrid deep learning algorithms to correct numerical weather forecasting," Applied Energy, Elsevier, vol. 312(C).
- Hoolohan, Victoria & Tomlin, Alison S. & Cockerill, Timothy, 2018. "Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data," Renewable Energy, Elsevier, vol. 126(C), pages 1043-1054.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ogliari, Emanuele & Sakwa, Maciej & Cusa, Paolo, 2024. "Enhanced Convolutional Neural Network for solar radiation nowcasting: All-Sky camera infrared images embedded with exogeneous parameters," Renewable Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Xinyu & Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Yu, Daren & Chang, Juntao, 2021. "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation," Energy, Elsevier, vol. 234(C).
- Sameer Al-Dahidi & Piero Baraldi & Enrico Zio & Lorenzo Montelatici, 2021. "Bootstrapped Ensemble of Artificial Neural Networks Technique for Quantifying Uncertainty in Prediction of Wind Energy Production," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
- Liu, Chenyu & Zhang, Xuemin & Mei, Shengwei & Zhen, Zhao & Jia, Mengshuo & Li, Zheng & Tang, Haiyan, 2022. "Numerical weather prediction enhanced wind power forecasting: Rank ensemble and probabilistic fluctuation awareness," Applied Energy, Elsevier, vol. 313(C).
- Hu, Jianming & Heng, Jiani & Wen, Jiemei & Zhao, Weigang, 2020. "Deterministic and probabilistic wind speed forecasting with de-noising-reconstruction strategy and quantile regression based algorithm," Renewable Energy, Elsevier, vol. 162(C), pages 1208-1226.
- Wu, Binrong & Wang, Lin, 2024. "Two-stage decomposition and temporal fusion transformers for interpretable wind speed forecasting," Energy, Elsevier, vol. 288(C).
- Liu, Jiarui & Fu, Yuchen, 2023. "Decomposition spectral graph convolutional network based on multi-channel adaptive adjacency matrix for renewable energy prediction," Energy, Elsevier, vol. 284(C).
- Parri, Srihari & Teeparthi, Kiran & Kosana, Vishalteja, 2023. "A hybrid VMD based contextual feature representation approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 219(P1).
- Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
- Linsenmeier, Manuel & Shrader, Jeffrey G., 2023. "Global inequalities in weather forecasts," SocArXiv 7e2jf, Center for Open Science.
- Héctor Manuel Zárate S., 2005.
"Cambios en la estructura salarial: una historia desde la regresión cuanfílica,"
Monetaria, CEMLA, vol. 0(4), pages 339-364, octubre-d.
- Héctor Manuel Zárate S., 2003. "Cambios En La Estructura Salarial: Una Historia Desde La Regresión Cuantílica," Borradores de Economia 2089, Banco de la Republica.
- Héctor Manuel Zárate S., 2003. "Cambios en la Estructura Salarial:Una Historia desde la Regresión Cuantílica," Borradores de Economia 245, Banco de la Republica de Colombia.
- Efobi, Uchenna & Asongu, Simplice & Okafor, Chinelo & Tchamyou, Vanessa & Tanankem, Belmondo, 2016.
"Diaspora Remittance Inflow, Financial Development and the Industrialisation of Africa,"
MPRA Paper
76121, University Library of Munich, Germany.
- Uchenna Efobi & Simplice A. Asongu & Chinelo Okafor & Vanessa Tchamyou & Belmondo Tanankem, 2016. "Diaspora Remittance Inflow, Financial Development and the Industrialisation of Africa," Research Africa Network Working Papers 16/037, Research Africa Network (RAN).
- Efobi Uchenna & Simplice Asongu & Chinelo Okafor & Vanessa Tchamyou, 2016. "Diaspora Remittance Inflow, Financial Development and the Industrialisation of Africa," Working Papers of the African Governance and Development Institute. 16/037, African Governance and Development Institute..
- Fernando Antonio Slaibe Postali, 2016.
"Oil windfalls and X-inefficiency: evidence from Brazil,"
Journal of Economic Studies, Emerald Group Publishing Limited, vol. 43(5), pages 699-718, October.
- Fernando Antonio Slaibe Postali, 2014. "Oil windfalls and tax inefficiency: evidence from Brazil," Working Papers, Department of Economics 2014_02, University of São Paulo (FEA-USP).
- Leon Zolotoy & Don O’Sullivan & Keke Song, 2021. "The Role of Ethical Standards in the Relationship Between Religious Social Norms and M&A Announcement Returns," Journal of Business Ethics, Springer, vol. 170(4), pages 721-742, May.
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Aboura, Sofiane & Chevallier, Julien, 2016.
"Spikes and crashes in the oil market,"
Research in International Business and Finance, Elsevier, vol. 36(C), pages 615-623.
- Sofiane Aboura & Julien Chevallier, 2016. "Spikes and crashes in the oil market," Post-Print halshs-01348711, HAL.
- Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
- Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
- Paulo M.M. Rodrigues & Rita Fradique Lourenço, 2015. "House prices: bubbles, exuberance or something else? Evidence from euro area countries," Working Papers w201517, Banco de Portugal, Economics and Research Department.
More about this item
Keywords
Wind speed forecasting; Wind power forecasting; Machine learning; Numerical weather prediction; Downscaling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:938-947. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.