IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v202y2023icp1198-1214.html
   My bibliography  Save this article

Efficient sunlight harvesting with combined system of large Fresnel lens segmented mirror reflectors and compound parabolic concentrator without tracking sun for indoor daylight illumination

Author

Listed:
  • Kumar, Krishana Ballabh
  • Gupta, Mayank
  • Mehta, Dalip Singh

Abstract

Sunlight is a great substitute for indoor artificial lighting during the daytime but still isn't so viable because of the cost of fiber-based daylighting system and its efficiency. In this paper, we report the design and development of a cost-effective non-mechanical tracking-based solar concentration system using a combination of a large Fresnel lens, segmented mirrors, and segmented compound parabolic concentrator (SCPC) for indoor daylighting application. This system presents the three-stage collection of sunlight by means of extending the collection aperture vertically while keeping the horizontal area same. First one is the concentrated light from the Fresnel lens, the second one is the direct sunlight incident onto the CPC and the third one is the direct sunlight reflected from the segmented mirrors onto the CPC. Hence the light transported through this system is adequate for illumination purposes inside the room. The manufacturing of ideal CPCs through the moulding process is both expensive and complex, and it necessitates extreme precision. Therefore, a cost-effective and efficient segmented CPC is designed and developed using a highly reflecting mirror-polished aluminum sheet which works well compared to the ideal CPC. To transport concentrated sunlight inside the room a highly reflecting horizontal light pipe is designed and developed. The collimated light at the output is challenging therefore, we have coupled inverted CPC at the exit of segmented CPC in the system. Further, to guide sunlight deep into the rooms we have coupled the entire system with a rectangular light pipe. An efficient diffuser is coupled at the end of the rectangular light pipe to illuminate the room uniformly. Various optical parameters such as illuminance, color rendering index (CRI), and correlated color temperature (CCT) values are analyzed from the result obtained which shows that the system can efficiently transport sunlight deep inside the room throughout the day. Therefore, the proposed system is very much helpful for the sustainable development of a country.

Suggested Citation

  • Kumar, Krishana Ballabh & Gupta, Mayank & Mehta, Dalip Singh, 2023. "Efficient sunlight harvesting with combined system of large Fresnel lens segmented mirror reflectors and compound parabolic concentrator without tracking sun for indoor daylight illumination," Renewable Energy, Elsevier, vol. 202(C), pages 1198-1214.
  • Handle: RePEc:eee:renene:v:202:y:2023:i:c:p:1198-1214
    DOI: 10.1016/j.renene.2022.11.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122017694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.11.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ngoc Hai Vu & Seoyong Shin, 2016. "A Large Scale Daylighting System Based on a Stepped Thickness Waveguide," Energies, MDPI, vol. 9(2), pages 1-15, January.
    2. Kumar, Vinod & Shrivastava, R.L. & Untawale, S.P., 2015. "Fresnel lens: A promising alternative of reflectors in concentrated solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 376-390.
    3. Pavlović, Tomislav & Milosavljević, Dragana & Radonjić, Ivana & Pantić, Lana & Radivojević, Aleksandar & Pavlović, Mila, 2013. "Possibility of electricity generation using PV solar plants in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 201-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Canyang & Zhang, Xueyan & Luo, Huilong & Chen, Fei & Xiao, Liye & Wang, Xin & Gao, Xuerong, 2024. "Optical performance investigation for spatially separated non-imaging concentrator with congruent plane concentrating surface," Energy, Elsevier, vol. 299(C).
    2. Guillermo Luque-Zuñiga & Rubén Vázquez-Medina & G. Ramos-López & David Alejandro Pérez-Márquez & H. Yee-Madeira, 2023. "Simulation and Experimental Evaluation of a Refractive-Reflective Static Solar Concentrator," Energies, MDPI, vol. 16(3), pages 1-10, January.
    3. Han, Jingyang & Li, Haoyue & Li, Yong & Hou, Shiqi, 2023. "Spectral splitting solar energy transfer in small-diameter multimode optical fiber based on two-stage concentration," Renewable Energy, Elsevier, vol. 207(C), pages 47-59.
    4. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngoc Hai Vu & Seoyong Shin, 2017. "Flat Optical Fiber Daylighting System with Lateral Displacement Sun-Tracking Mechanism for Indoor Lighting," Energies, MDPI, vol. 10(10), pages 1-13, October.
    2. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.
    3. Allen Jong-Woei Whang & Tsai-Hsien Yang & Zhong-Hao Deng & Yi-Yung Chen & Wei-Chieh Tseng & Chun-Han Chou, 2019. "A Review of Daylighting System: For Prototype Systems Performance and Development," Energies, MDPI, vol. 12(15), pages 1-34, July.
    4. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    5. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Renzi, M. & Egidi, L. & Comodi, G., 2015. "Performance analysis of two 3.5kWp CPV systems under real operating conditions," Applied Energy, Elsevier, vol. 160(C), pages 687-696.
    7. Kim, Namsu & Kim, Dajung & Kang, Hanjun & Park, Yong-Gi, 2016. "Improved heat dissipation in a crystalline silicon PV module for better performance by using a highly thermal conducting backsheet," Energy, Elsevier, vol. 113(C), pages 515-520.
    8. Potić, Ivan & Golić, Rajko & Joksimović, Tatjana, 2016. "Analysis of insolation potential of Knjaževac Municipality (Serbia) using multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 235-245.
    9. Shrivastava, R.L. & Vinod Kumar, & Untawale, S.P., 2017. "Modeling and simulation of solar water heater: A TRNSYS perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 126-143.
    10. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    11. Pantic, Lana S. & Pavlović, Tomislav M. & Milosavljević, Dragana D. & Radonjic, Ivana S. & Radovic, Miodrag K. & Sazhko, Galina, 2016. "The assessment of different models to predict solar module temperature, output power and efficiency for Nis, Serbia," Energy, Elsevier, vol. 109(C), pages 38-48.
    12. Hoang Vu & Tran Quoc Tien & Jongbin Park & Meeryoung Cho & Ngoc Hai Vu & Seoyong Shin, 2022. "Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use," Energies, MDPI, vol. 15(6), pages 1-14, March.
    13. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Mirjanić, Dragoljub LJ. & Divnić, Darko, 2016. "Photovoltaic solar plants in the Republic of Srpska - current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 546-560.
    14. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    15. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and arid climate: A multiple-case study analysis," Renewable Energy, Elsevier, vol. 62(C), pages 369-378.
    16. Ngoc Hai Vu & Seoyong Shin, 2018. "Flat Concentrator Photovoltaic System with Lateral Displacement Tracking for Residential Rooftops," Energies, MDPI, vol. 11(1), pages 1-12, January.
    17. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    18. Yan, Suying & Zhao, Sitong & Ma, Xiaodong & Ming, Tingzhen & Wu, Ze & Zhao, Xiaoyan & Ma, Rui, 2020. "Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities," Renewable Energy, Elsevier, vol. 159(C), pages 801-811.
    19. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    20. Liang, Shen & Ma, Xinglong & He, Qian & Wang, Zhenzhen & Zheng, Hongfei, 2023. "Concentrating behavior of elastic fresnel lens solar concentrator in tensile deformation caused zoom," Renewable Energy, Elsevier, vol. 209(C), pages 471-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:202:y:2023:i:c:p:1198-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.