IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp957-976.html
   My bibliography  Save this article

A comprehensive optimal energy control in interconnected microgrids through multiport converter under N−1 criterion and demand response program

Author

Listed:
  • Kermani, Mostafa
  • Chen, Peiyuan
  • Göransson, Lisa
  • Bongiorno, Massimo

Abstract

Nowadays, the local distribution grids have been facing technical, economic, and regulatory challenges, because of the increased integration of renewable energy sources (RESs) and electrification of vehicles. The traditional solutions to the grid expansion, e.g., to build an additional power line, are utility-centered solutions, i.e., the distribution grid operators (DSOs) are the only party involved to tackle grid issues. The DSOs have to engage grid users with technology providers to develop innovative solutions that tackle one problem and overcome several cost-effectively. This paper presents a holistic solution to optimally control cross-sectoral energy flow between interconnected microgrids (MGs) consisting of different RESs, hydroelectric power plant (HPP) and wind turbines (WTs) to meet electric vehicles (EVs), residential, commercial and industrial demands with the main grid contribution. This issue will provide the advantages of community-based MGs for local energy trading which causes for an active and engaged system, however, an adequate control strategy for proper operation is required. The proposed solution is based on a new interconnection line between two MGs through a multiport converter (MPC) with the techno-economic consideration of newly installed components such as MPC, cables and the required battery energy storage system (BESS). The proposed case study is evaluated under three different conditions e.g., load increment, demand response (DR) and N-1 criterion in separate, interconnect and island modes. The CPLEX solver of GAMS software is employed to solve the mixed-integer linear programming model. The results show that the applied interconnection line for MGs compared to the separated operation mode can decrease the system's total costs, reduce the applied peak to the upstream grid, and enhance the system's reliability under different conditions. Furthermore, the applied solution provides the ability for MGs operation even in island mode under different conditions for a full day (24 h).

Suggested Citation

  • Kermani, Mostafa & Chen, Peiyuan & Göransson, Lisa & Bongiorno, Massimo, 2022. "A comprehensive optimal energy control in interconnected microgrids through multiport converter under N−1 criterion and demand response program," Renewable Energy, Elsevier, vol. 199(C), pages 957-976.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:957-976
    DOI: 10.1016/j.renene.2022.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siano, Pierluigi, 2014. "Demand response and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 461-478.
    2. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    3. Martin-Martínez, F. & Sánchez-Miralles, A. & Rivier, M., 2016. "A literature review of Microgrids: A functional layer based classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1133-1153.
    4. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2019. "Impacts of electric vehicles on the electricity generation portfolio – A Scandinavian-German case study," Applied Energy, Elsevier, vol. 235(C), pages 1637-1650.
    5. Zhu, Dafeng & Yang, Bo & Liu, Qi & Ma, Kai & Zhu, Shanying & Ma, Chengbin & Guan, Xinping, 2020. "Energy trading in microgrids for synergies among electricity, hydrogen and heat networks," Applied Energy, Elsevier, vol. 272(C).
    6. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    7. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    8. Ullmark, Jonathan & Göransson, Lisa & Chen, Peiyuan & Bongiorno, Massimo & Johnsson, Filip, 2021. "Inclusion of frequency control constraints in energy system investment modeling," Renewable Energy, Elsevier, vol. 173(C), pages 249-262.
    9. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    10. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    2. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    3. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    4. Öberg, Simon & Odenberger, Mikael & Johnsson, Filip, 2022. "The cost dynamics of hydrogen supply in future energy systems – A techno-economic study," Applied Energy, Elsevier, vol. 328(C).
    5. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    6. Olsthoorn, Mark & Schleich, Joachim & Wohlfarth, Katharina & Klobasa, Marian, 2019. "How much load flexibility can a euro buy? Findings from a contingent valuation experiment with companies in the German commerce and services sector," Energy Economics, Elsevier, vol. 84(S1).
    7. Specht, Jan Martin & Madlener, Reinhard, 2019. "Energy Supplier 2.0: A conceptual business model for energy suppliers aggregating flexible distributed assets and policy issues raised," Energy Policy, Elsevier, vol. 135(C).
    8. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    9. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    10. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    11. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    13. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    14. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    16. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    17. Tang, Daogui & Fang, Yi-Ping & Zio, Enrico, 2023. "Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    18. Baloglu, Ulas Baran & Demir, Yakup, 2018. "Lightweight privacy-preserving data aggregation scheme for smart grid metering infrastructure protection," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 16-24.
    19. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:957-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.