IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp697-709.html
   My bibliography  Save this article

Optimal design of cathode gas diffusion layer with arrayed grooves for performance enhancement of a PEM fuel cell

Author

Listed:
  • Wang, Yulin
  • Zhang, Penghui
  • Gao, Yuyao
  • He, Wei
  • Zhao, Yulong
  • Wang, Xiaodong

Abstract

A novel cathode gas diffusion layer (GDL) with arrayed grooves is proposed to enhance the performance of polymer electrolyte membrane (PEM) fuel cells. The influence of various geometric parameters regarding the novel GDL on internal physical quantities transport and cell performance is examined by a 3D multiphase fuel cell model. Results found that oxygen diffusion and water drainage are remarkably enhanced for the novel GDL, thereby leading to an augmented fuel cell performance. A reasonable design of structure parameters, such as the groove size and interval, the length of the GDL with arrayed grooves, and the nonuniform arrayed grooves, could further benefit current density homogeneity and performance for fuel cells. The results reveal that the novel GDL with a groove width, length and interval of 0.1 mm, 0.3 mm and 1.0 mm, respectively, a total arrayed groove length of 15 mm, and a nonuniform arrayed grooves exhibits a better cell performance than all the other designed GDLs and the traditional GDL tested in this simulation. The optimally designed GDL with arrayed grooves improves the maximum power density by approximately 5.6%, enhancing the current density within the regions of CCL near the outlet, thereby favoring the operational stability of fuel cells.

Suggested Citation

  • Wang, Yulin & Zhang, Penghui & Gao, Yuyao & He, Wei & Zhao, Yulong & Wang, Xiaodong, 2022. "Optimal design of cathode gas diffusion layer with arrayed grooves for performance enhancement of a PEM fuel cell," Renewable Energy, Elsevier, vol. 199(C), pages 697-709.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:697-709
    DOI: 10.1016/j.renene.2022.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122013489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    2. Cao, Tao-Feng & Lin, Hong & Chen, Li & He, Ya-Ling & Tao, Wen-Quan, 2013. "Numerical investigation of the coupled water and thermal management in PEM fuel cell," Applied Energy, Elsevier, vol. 112(C), pages 1115-1125.
    3. Wang, Yulin & Wang, Xiaoai & Fan, Yuanzhi & He, Wei & Guan, Jinglei & Wang, Xiaodong, 2022. "Numerical Investigation of Tapered Flow Field Configurations for Enhanced Polymer Electrolyte Membrane Fuel Cell Performance," Applied Energy, Elsevier, vol. 306(PA).
    4. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    5. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    6. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi & Wei, Pengnan, 2024. "Enhancing PEM fuel cell dynamic performance: Co-optimization of cathode catalyst layer composition and operating conditions using a novel surrogate model," Renewable Energy, Elsevier, vol. 231(C).
    2. Lin, Rui & Lan, Shunbo & Wu, Xiaoyan & Hao, Zhixian, 2024. "Effect of perforated cracks on liquid water in microporous layers by lattice Boltzmann method," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Wei & Zhang, Jifang & Guo, Rui & Pei, Chenchen & Li, Hailong & Liu, Shengchun & Wei, Jie & Wang, Yulin, 2022. "Performance analysis and structural optimization of a finned liquid-cooling radiator for chip heat dissipation," Applied Energy, Elsevier, vol. 327(C).
    2. Wang, Yulin & Guan, Chao & Li, Hua & Zhao, Yulong & Wang, Cheng & He, Wei, 2023. "Flow field configuration design for a large-scale hydrogen polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 351(C).
    3. Ge, Minghui & Li, Zhenhua & Zhao, Yuntong & Xuan, Zhiwei & Li, Yanzhe & Zhao, Yulong, 2022. "Experimental study of thermoelectric generator with different numbers of modules for waste heat recovery," Applied Energy, Elsevier, vol. 322(C).
    4. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Wang, Yulin & Ge, Minghui, 2023. "Numerical investigation of an exhaust thermoelectric generator with a perforated plate," Energy, Elsevier, vol. 263(PB).
    5. Wang, Yulin & Xu, Haokai & Zhang, Zhe & Li, Hua & Wang, Xiaodong, 2022. "Lattice Boltzmann simulation of a gas diffusion layer with a gradient polytetrafluoroethylene distribution for a proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 320(C).
    6. Lei Li & Yude Wu & Yi Lu & Xiao Yang & Qiyang Wang & Xiaoai Wang & Yulin Wang, 2022. "Numerical Simulation on the Structural Design of a Multi-Pore Water Diffuser during the External Ice Melting Process of an Ice Storage System," Energies, MDPI, vol. 15(6), pages 1-17, March.
    7. Yu, Yang & Chen, Sheng & Wu, Yuanhao, 2023. "Predicting gas diffusion layer flow information in proton exchange membrane fuel cells from cross-sectional data using deep learning methods," Energy, Elsevier, vol. 282(C).
    8. Hossein Pourrahmani & Hamed Shakeri & Jan Van herle, 2022. "Thermoelectric Generator as the Waste Heat Recovery Unit of Proton Exchange Membrane Fuel Cell: A Numerical Study," Energies, MDPI, vol. 15(9), pages 1-21, April.
    9. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    10. Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
    11. Sun, Zeyu & Luo, Ding & Wang, Ruochen & Li, Ying & Yan, Yuying & Cheng, Ziming & Chen, Jie, 2022. "Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model," Energy, Elsevier, vol. 256(C).
    12. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).
    13. Liu, Xun & Zhang, Chen-Feng & Zhou, Jian-Gang & Xiong, Xin & Wang, Yi-Ping, 2022. "Thermal performance of battery thermal management system using fins to enhance the combination of thermoelectric Cooler and phase change Material," Applied Energy, Elsevier, vol. 322(C).
    14. Wang, Yulin & Wang, Han & Wang, Guozhuo & Li, Hua & Zhao, Yulong & He, Wei, 2023. "Enhancement of water droplet drainage performance in a cathode flow channel with baffles for a polymer electrolyte membrane fuel cell," Renewable Energy, Elsevier, vol. 219(P1).
    15. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    16. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    17. Zhao, Chen & Wang, Fei, 2023. "Optimal performance and modeling study of air-cooled proton exchange membrane fuel cell with various bipolar plate structure," Applied Energy, Elsevier, vol. 345(C).
    18. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    19. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    20. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:697-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.