IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp1233-1243.html
   My bibliography  Save this article

Asymmetric linkages between renewable energy consumption, financial integration, and ecological sustainability: Moderating role of technology innovation and urbanization

Author

Listed:
  • Zhang, Wenting
  • Wang, Zibang
  • Adebayo, Tomiwa Sunday
  • Altuntaş, Mehmet

Abstract

Despite their economic success, the BRICS countries have yet to achieve environmental sustainability. On the other hand, these countries will not be able to maintain their economic expansion if they do not protect the natural environment. In this regard, this paper intends to assess the effects of financial integration (globalization) on ecological footprint. The paper also considers other ecological footprint drivers, including economic expansion, urbanization, renewable energy and technological innovation. The research utilizes a dataset spanning from 1990 to 2018. The study employed the method of moments quantile regression (MMQR) approach, which is robust to cross-sectional dependence and slope homogeneity issues. The outcomes from the MMQR disclose that the effect of financial globalization on ecological footprint is positive across all quantiles (0.1–0.90), thus validating the pollution haven hypothesis (PHH) in the BRICS nations. Furthermore, both renewable energy and technological innovation curb ecological footprint across all quantiles (0.1–0.90). Moreover, technological innovation is proven to impact the environment positively across all quantiles (0.1–0.90) via the path of urbanization. As a result, technological innovation is projected to help the BRICS nations achieve sustainable urbanization. The DOLS, FMOLS, FE-OLS outcomes also validate the outcomes of MMQR. Based on these results, policies were proposed.

Suggested Citation

  • Zhang, Wenting & Wang, Zibang & Adebayo, Tomiwa Sunday & Altuntaş, Mehmet, 2022. "Asymmetric linkages between renewable energy consumption, financial integration, and ecological sustainability: Moderating role of technology innovation and urbanization," Renewable Energy, Elsevier, vol. 197(C), pages 1233-1243.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1233-1243
    DOI: 10.1016/j.renene.2022.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011879
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chihwa Kao & Min‐Hsien Chiang & Bangtian Chen, 1999. "International R&D Spillovers: An Application of Estimation and Inference in Panel Cointegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 691-709, November.
    2. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    3. Danish I. Godil & Zhang Yu & Arshian Sharif & Rimsha Usman & Syed Abdul Rehman Khan, 2021. "Investigate the role of technology innovation and renewable energy in reducing transport sector CO2 emission in China: A path toward sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(4), pages 694-707, July.
    4. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    5. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    6. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    7. Gazi A. Uddin & Khorshed Alam & Jeff Gow, 2016. "Does Ecological Footprint Impede Economic Growth? An Empirical Analysis Based on the Environmental Kuznets Curve Hypothesis," Australian Economic Papers, Wiley Blackwell, vol. 55(3), pages 301-316, September.
    8. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    11. repec:bla:obuest:v:61:y:1999:i:0:p:691-709 is not listed on IDEAS
    12. Sinha, Avik & Sengupta, Tuhin & Alvarado, Rafael, 2020. "Interplay between Technological Innovation and Environmental Quality: Formulating the SDG Policies for Next 11 Economies," MPRA Paper 104247, University Library of Munich, Germany, revised 2020.
    13. Iftikhar Yasin & Nawaz Ahmad & M. Aslam Chaudhary, 2020. "Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(2), pages 621-649, January.
    14. Aldieri, Luigi & Makkonen, Teemu & Vinci, Concetto Paolo, 2022. "Do research and development and environmental knowledge spillovers facilitate meeting sustainable development goals for resource efficiency?," Resources Policy, Elsevier, vol. 76(C).
    15. Al-Mulali, Usama & Ozturk, Ilhan, 2015. "The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region," Energy, Elsevier, vol. 84(C), pages 382-389.
    16. Tomiwa Sunday Adebayo & Dervis Kirikkaleli, 2021. "Impact of renewable energy consumption, globalization, and technological innovation on environmental degradation in Japan: application of wavelet tools," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16057-16082, November.
    17. Adebayo, Tomiwa Sunday & Onifade, Stephen Taiwo & Alola, Andrew Adewale & Muoneke, Obumneke Bob, 2022. "Does it take international integration of natural resources to ascend the ladder of environmental quality in the newly industrialized countries?," Resources Policy, Elsevier, vol. 76(C).
    18. Bashir, Muhammad Farhan & MA, Benjiang & Shahbaz, Muhammad & Shahzad, Umer & Vo, Xuan Vinh, 2021. "Unveiling the heterogeneous impacts of environmental taxes on energy consumption and energy intensity: Empirical evidence from OECD countries," Energy, Elsevier, vol. 226(C).
    19. Hongzhong Fan & Md Ismail Hossain, 2018. "Technological Innovation, Trade Openness, CO2 Emission and Economic Growth: Comparative Analysis between China and India," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 240-257.
    20. Khan, Zeeshan & Hussain, Muzzammil & Shahbaz, Muhammad & Yang, Siqun & Jiao, Zhilun, 2020. "Natural resource abundance, technological innovation, and human capital nexus with financial development: A case study of China," Resources Policy, Elsevier, vol. 65(C).
    21. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    22. Nathaniel, Solomon Prince & Yalçiner, Kürşat & Bekun, Festus Victor, 2021. "Assessing the environmental sustainability corridor: Linking natural resources, renewable energy, human capital, and ecological footprint in BRICS," Resources Policy, Elsevier, vol. 70(C).
    23. Athanasios Kampas & Katarzyna Czech & Stelios Rozakis, 2021. "Do Globalisation and Environmental Policy Stringency affect the Environmental Terms of Trade? Evidence from the V4 countries," Working Papers 2021-1, Agricultural University of Athens, Department Of Agricultural Economics.
    24. Razzaq, Asif & Wang, Yufeng & Chupradit, Supat & Suksatan, Wanich & Shahzad, Farrukh, 2021. "Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework," Technology in Society, Elsevier, vol. 66(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ullah, Sami & Lin, Boqiang, 2024. "Harnessing the synergistic impacts of financial structure, industrialization, and ecological footprint through the lens of the EKC hypothesis. Insights from Pakistan," Energy, Elsevier, vol. 307(C).
    2. Ullah, Saif & Nobanee, Haitham & Iftikhar, Huma, 2023. "Global financial integration, governance-by-technology, and green growth," International Review of Financial Analysis, Elsevier, vol. 90(C).
    3. Taghizadeh-Hesary, Farhad & Dong, Kangyin & Zhao, Congyu & Phoumin, Han, 2023. "Can financial and economic means accelerate renewable energy growth in the climate change era? The case of China," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 730-743.
    4. Wei, Shuxin & Wei, Wenshan & Umut, Alican, 2023. "Do renewable energy consumption, technological innovation, and international integration enhance environmental sustainability in Brazil?," Renewable Energy, Elsevier, vol. 202(C), pages 172-183.
    5. Kola Benson Ajeigbe & Fortune Ganda, 2024. "Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    6. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    7. Yuanyuan Chen & JungHyun Song, 2023. "The Technological Innovation Efficiency of China’s Renewable Energy Enterprises: An Estimation Based on a Three-Stage DEA Model," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    8. Han, Guixin & Cai, Xuesen, 2024. "The linkages among natural resources, sustainable energy technologies and human capital: An evidence from N-11 countries," Resources Policy, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Guixin & Cai, Xuesen, 2024. "The linkages among natural resources, sustainable energy technologies and human capital: An evidence from N-11 countries," Resources Policy, Elsevier, vol. 90(C).
    2. Appiah, Michael & Li, Mingxing & Sehrish, Saba & Abaji, Emad Eddin, 2023. "Investigating the connections between innovation, natural resource extraction, and environmental pollution in OECD nations; examining the role of capital formation," Resources Policy, Elsevier, vol. 81(C).
    3. Ali, Kishwar & Jianguo, Du & Kirikkaleli, Dervis, 2022. "Modeling the natural resources and financial inclusion on ecological footprint: The role of economic governance institutions. Evidence from ECOWAS economies," Resources Policy, Elsevier, vol. 79(C).
    4. Chien‐Chiang Lee & Godwin Olasehinde‐Williams & Bright Akwasi Gyamfi, 2023. "The synergistic effect of green trade and economic complexity on sustainable environment: A new perspective on the economic and ecological components of sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 976-989, April.
    5. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    6. Zhao, Xinlu & Adebayo, Tomiwa Sunday & Kong, Xianli & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Relating energy innovations and natural resources as determinants of environmental sustainability: The role of globalization in G7 countries," Resources Policy, Elsevier, vol. 79(C).
    7. Sun, Yunpeng & Li, Haoning & Andlib, Zubaria & Genie, Mesfin G., 2022. "How do renewable energy and urbanization cause carbon emissions? Evidence from advanced panel estimation techniques," Renewable Energy, Elsevier, vol. 185(C), pages 996-1005.
    8. Jahanger, Atif & Usman, Muhammad & Kousar, Rakhshanda & Balsalobre-Lorente, Daniel, 2023. "Implications for optimal abatement path through the deployment of natural resources, human development, and energy consumption in the era of digitalization," Resources Policy, Elsevier, vol. 86(PB).
    9. Langnel, Zechariah & Amegavi, George Babington & Donkor, Prince & Mensah, James Kwame, 2021. "Income inequality, human capital, natural resource abundance, and ecological footprint in ECOWAS member countries," Resources Policy, Elsevier, vol. 74(C).
    10. Stephen Taiwo Onifade & Festus Victor Bekun & Agboola Phillips & Mehmet Altuntaş, 2022. "How do technological innovation and renewables shape environmental quality advancement in emerging economies: An exploration of the E7 bloc?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 2002-2014, December.
    11. Bashir, Muhammad Farhan & Pan, Yanchun & Shahbaz, Muhammad & Ghosh, Sudeshna, 2023. "How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries," Renewable Energy, Elsevier, vol. 204(C), pages 697-709.
    12. Karmaker, Shamal Chandra & Hosan, Shahadat & Chapman, Andrew J. & Saha, Bidyut Baran, 2021. "The role of environmental taxes on technological innovation," Energy, Elsevier, vol. 232(C).
    13. Wei, Shuxin & Wei, Wenshan & Umut, Alican, 2023. "Do renewable energy consumption, technological innovation, and international integration enhance environmental sustainability in Brazil?," Renewable Energy, Elsevier, vol. 202(C), pages 172-183.
    14. Iqbal, Mubasher & Arshed, Noman & Chan, Ling-Foon, 2024. "Exploring the dynamics: Biodiversity impacts of natural resource extraction with moderating influence of FinTech for sustainable practices in resource-rich nations," Resources Policy, Elsevier, vol. 91(C).
    15. Wang, Zhaohua & Bui, Quocviet & Zhang, Bin & Nawarathna, Chulan Lasantha K. & Mombeuil, Claudel, 2021. "The nexus between renewable energy consumption and human development in BRICS countries: The moderating role of public debt," Renewable Energy, Elsevier, vol. 165(P1), pages 381-390.
    16. GU, Jianqiang & Umar, Muhammad & Soran, Semih & Yue, Xiao-Guang, 2020. "Exacerbating effect of energy prices on resource curse: Can research and development be a mitigating factor?," Resources Policy, Elsevier, vol. 67(C).
    17. Stephen Taiwo Onifade & Andrew Adewale Alola, 2022. "Energy transition and environmental quality prospects in leading emerging economies: The role of environmental‐related technological innovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1766-1778, December.
    18. Najia Saqib & Ivan A. Duran & Nazia Hashmi, 2022. "Impact of Financial Deepening, Energy Consumption and Total Natural Resource Rent on CO2 Emission in the GCC Countries: Evidence from Advanced Panel Data Simulation," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 400-409, March.
    19. Bai, Rongjun & Liu, Yan, 2023. "Natural resources as a source of financing energy poverty reduction? Resources extraction perspective," Resources Policy, Elsevier, vol. 82(C).
    20. Bakry, Walid & Mallik, Girijasankar & Nghiem, Xuan-Hoa & Sinha, Avik & Vo, Xuan Vinh, 2023. "Is green finance really “green”? Examining the long-run relationship between green finance, renewable energy and environmental performance in developing countries," Renewable Energy, Elsevier, vol. 208(C), pages 341-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:1233-1243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.