IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp987-997.html
   My bibliography  Save this article

A feature extraction and machine learning framework for bearing fault diagnosis

Author

Listed:
  • Cui, Bodi
  • Weng, Yang
  • Zhang, Ning

Abstract

Wind power generation has been widely adopted due to its renewable nature and decreasing capital cost per kW. However, existing equipment ages rapidly, leading to higher failure rates, greater operation and maintenance costs, and worsening safety conditions, calling for improved condition monitoring and fault diagnosis for wind turbines. Past methods utilize physical models, but they are only successful in laboratory environments. As increasing data are becoming available, there are methods applying machine learning without careful discrimination, leading to low accuracy. To solve this problem, first this paper proposes to conduct unsupervised learning to understand data properties, e.g., structural density. Subsequently, the sensitivity analysis is conducted to extract the significant features and to avoid overfitting. The sensitivity of various features that are characteristics of wind turbine bearings may vary significantly under different working conditions. During such a process, the piece-wise properties are studied to improve supervised learning. By combining the properties of data and regression, a three-stage learning algorithm is proposed to refine and learn the most useful information for turbine bearing fault diagnosis. The proposed framework is validated by using real data from diversified data sets for nonstationary vibration signals of bearings.

Suggested Citation

  • Cui, Bodi & Weng, Yang & Zhang, Ning, 2022. "A feature extraction and machine learning framework for bearing fault diagnosis," Renewable Energy, Elsevier, vol. 191(C), pages 987-997.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:987-997
    DOI: 10.1016/j.renene.2022.04.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    2. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    3. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    4. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    5. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    6. Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
    7. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    8. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Lundström & Mattias O’Nils, 2023. "Factory-Based Vibration Data for Bearing-Fault Detection," Data, MDPI, vol. 8(7), pages 1-9, June.
    2. Zhao, Zhigao & Chen, Fei & Gui, Zhonghua & Liu, Dong & Yang, Jiandong, 2023. "Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices," Renewable Energy, Elsevier, vol. 218(C).
    3. Tang, Yaochi & Chang, Yunchi & Li, Kuohao, 2023. "Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage," Renewable Energy, Elsevier, vol. 212(C), pages 855-864.
    4. Mehmet Akif Bütüner & İlhan Koşalay & Doğan Gezer, 2022. "Machine-Learning-Based Modeling of a Hydraulic Speed Governor for Anomaly Detection in Hydropower Plants," Energies, MDPI, vol. 15(21), pages 1-19, October.
    5. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    4. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    5. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    6. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    7. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    8. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    9. Wang, Anqi & Qian, Zheng & Pei, Yan & Jing, Bo, 2022. "A de-ambiguous condition monitoring scheme for wind turbines using least squares generative adversarial networks," Renewable Energy, Elsevier, vol. 185(C), pages 267-279.
    10. López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
    11. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    12. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Liang Lu & Minyan Zhu & Haijun Wu & Jianzhong Wu, 2022. "A Review and Case Analysis on Biaxial Synchronous Loading Technology and Fast Moment-Matching Methods for Fatigue Tests of Wind Turbine Blades," Energies, MDPI, vol. 15(13), pages 1-34, July.
    14. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    15. Weiwu Feng & Da Yang & Wenxue Du & Qiang Li, 2023. "In Situ Structural Health Monitoring of Full-Scale Wind Turbine Blades in Operation Based on Stereo Digital Image Correlation," Sustainability, MDPI, vol. 15(18), pages 1-17, September.
    16. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    17. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    18. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    19. Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
    20. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:987-997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.