IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp502-509.html
   My bibliography  Save this article

Screening of single-atom catalysts sandwiched by boron nitride sheet and graphene for oxygen reduction and oxygen evolution

Author

Listed:
  • Chen, Xin
  • Lin, Shangyu
  • Zhang, Hui

Abstract

Single-atom catalysts possess high chemical activity, but their single-atom active sites are not only directly attacked by the reaction intermediates but also easily drifted from the support. In this work, a series of single-atom catalysts sandwiched by boron nitride sheet and graphene (BN/TM/G) are screened for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) theoretically. The scaling relationships indicate that ΔG∗OH can serve as the descriptor to reflect the catalytic activity of BN/TM/G. Moreover, the volcano plot suggests that BN/TM/G with moderate binding strength of ∗OH (0.5 eV < ΔG∗OH < 1.2 eV) show relatively high ORR and OER activity. When the metals are Co, Mo, Ru, Tc, Mn, Cu, Ni, and Fe, the corresponding BN/TM/G catalysts are screened out for efficiently catalyzing ORR and OER. Especially, BN/Cu/G has the highest ORR activity with overpotential of 0.39 V, which may be attributed to the moderate interaction between Cu atom and BN sheet/graphene. The BN/Mo/G has the highest OER activity with overpotential of 0.52 V. In addition, BN/Cu/G and BN/Mo/G have excellent poisoning-tolerance ability for H2S, SO2, and CO. This work is conducive to provide guidance for designing this kind of sandwich-like electrocatalysts for ORR and OER.

Suggested Citation

  • Chen, Xin & Lin, Shangyu & Zhang, Hui, 2022. "Screening of single-atom catalysts sandwiched by boron nitride sheet and graphene for oxygen reduction and oxygen evolution," Renewable Energy, Elsevier, vol. 189(C), pages 502-509.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:502-509
    DOI: 10.1016/j.renene.2022.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002816
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    2. Shujie Tang & Haomin Wang & Hui Shan Wang & Qiujuan Sun & Xiuyun Zhang & Chunxiao Cong & Hong Xie & Xiaoyu Liu & Xiaohao Zhou & Fuqiang Huang & Xiaoshuang Chen & Ting Yu & Feng Ding & Xiaoming Xie & M, 2015. "Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride," Nature Communications, Nature, vol. 6(1), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Yao, Yue & Ma, Yue & Wang, Chenpeng & Ye, Hao & Liu, Yinglong & Liu, Jiawei & Zhao, Xiaobo & Tao, Tao & Yao, Yingbang & Lu, Shengguo & Yang, Huazheng & Liang, Bo, 2022. "A cofuel channel microtubular solid oxide fuel/electrolysis cell," Applied Energy, Elsevier, vol. 327(C).
    4. Obu Samson Showers & Sunetra Chowdhury, 2024. "Enhancing Energy Supply Reliability for University Lecture Halls Using Photovoltaic-Battery Microgrids: A South African Case Study," Energies, MDPI, vol. 17(13), pages 1-26, June.
    5. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    6. Lü, Xueqin & Deng, Ruiyu & Chen, Chao & Wu, Yinbo & Meng, Ruidong & Long, Liyuan, 2022. "Performance optimization of fuel cell hybrid power robot based on power demand prediction and model evaluation," Applied Energy, Elsevier, vol. 316(C).
    7. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    8. Pedro Andrade & Khaled Laadjal & Adérito Neto Alcaso & Antonio J. Marques Cardoso, 2024. "A Comprehensive Review on Condition Monitoring and Fault Diagnosis in Fuel Cell Systems: Challenges and Issues," Energies, MDPI, vol. 17(3), pages 1-45, January.
    9. Li, Xueling & Li, Renfu & Hu, Lin & Zhu, Shengjie & Zhang, Yuanyuan & Cui, Xinguang & Li, Yichao, 2023. "Performance analysis of a dish solar thermal power system with lunar regolith heat storage for continuous energy supply of lunar base," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:502-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.