IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp132-144.html
   My bibliography  Save this article

Phosphating MIL-53(Fe) as cocatalyst modified porous NiTiO3 for photocatalytic hydrogen production

Author

Listed:
  • Li, Hongying
  • Gong, Haiming
  • Hao, Xuqiang
  • Wang, Guorong
  • Jin, Zhiliang

Abstract

Reasonably construct a new type of NiTiO3/Fe2P to modify porous perovskite materials and use simple high-temperature phosphating treatments. The results showed that the optimal hydrogen production performance of NiTiO3/Fe2P reached 299.00 μmol in 5 h, which is 3.68 times that of pure Fe2P. The existence of metal-organic framework materials as supporting materials facilitates the dispersed growth of NiTiO3 and Fe2P, and avoids the aggregation of nanorods and particles. The introduction of perovskite porous nanorods is the reason for the enhanced light absorption capacity of composite materials. In addition, transition metal phosphide Fe2P as a co-catalyst can serve as an electron trapping center to receive electrons from NiTiO3. Photoluminescence spectroscopy and electrochemical experiments have confirmed that transition metals have good conductivity and can effectively enhance the separation and transfer of carriers. Density functional theory calculations are used to calculate the band structure and density of states of NiTiO3 and Fe2P. In conclusion, this study provides a new idea for improving the photocatalytic activity of perovskite materials by modifying porous nanorod NiTiO3 with derivatives of MOF materials.

Suggested Citation

  • Li, Hongying & Gong, Haiming & Hao, Xuqiang & Wang, Guorong & Jin, Zhiliang, 2022. "Phosphating MIL-53(Fe) as cocatalyst modified porous NiTiO3 for photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 188(C), pages 132-144.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:132-144
    DOI: 10.1016/j.renene.2022.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khani, Yasin & Kamyar, Niloofar & Bahadoran, Farzad & Safari, Nasser & Amini, Mostafa M., 2020. "A520 MOF-derived alumina as unique support for hydrogen production from methanol steam reforming: The critical role of support on performance," Renewable Energy, Elsevier, vol. 156(C), pages 1055-1064.
    2. Wang, Peifang & Wu, Tengfei & Ao, Yanhui & Wang, Chao, 2019. "Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation," Renewable Energy, Elsevier, vol. 131(C), pages 180-186.
    3. Raheman AR, Shakeelur & Wilson, Higgins M. & Momin, Bilal M. & Annapure, Uday S. & Jha, Neetu, 2020. "CdSe quantum dots modified thiol functionalized g-C3N4: Intimate interfacial charge transfer between 0D/2D nanostructure for visible light H2 evolution," Renewable Energy, Elsevier, vol. 158(C), pages 431-443.
    4. Liu, Xiangyu & Min, Shixiong & Xue, Yuan & Lei, Yonggang & Chen, Yangyang & Wang, Fang & Zhang, Zhengguo, 2019. "Accelerating photosensitized H2 evolution over in situ grown amorphous MoSx catalyst employing TiO2 as an efficient catalyst loading matrix and electron transfer relay," Renewable Energy, Elsevier, vol. 138(C), pages 562-572.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Haoran & Xu, Mengyu & Zhang, Shicong & Yu, Fengtao & Kong, Kangyi & Shen, Zhongjin & Hua, Jianli, 2020. "Organic blue-colored D-A-π-A dye-sensitized TiO2 for efficient and stable photocatalytic hydrogen evolution under visible/near-infrared-light irradiation," Renewable Energy, Elsevier, vol. 155(C), pages 1051-1059.
    2. Tang, Xincheng & Wu, Yanxiao & Fang, Zhenchang & Dong, Xinyu & Du, Zhongxuan & Deng, Bicai & Sun, Chunhua & Zhou, Feng & Qiao, Xinqi & Li, Xinling, 2024. "Syntheses, catalytic performances and DFT investigations: A recent review of copper-based catalysts of methanol steam reforming for hydrogen production," Energy, Elsevier, vol. 295(C).
    3. Pan, Jiaqi & Li, Hongli & Li, Shi & Ou, Wei & Liu, Yanyan & Wang, Jingjing & Song, Changsheng & Zheng, Yingying & Li, Chaorong, 2020. "The enhanced photocatalytic hydrogen production of nickel-cobalt bimetals sulfide synergistic modified CdS nanorods with active facets," Renewable Energy, Elsevier, vol. 156(C), pages 469-477.
    4. Bai, Ping & Lang, Junyu & Wang, Yinshu & Tong, Haojie & Wang, Zelin & Zhang, Bingbing & Su, Yiguo & Chai, Zhanli, 2024. "Z-scheme ZnCdS/NiCo-LDH photocatalyst followed dual-channel charge transfer via Au-intercalation for renewable hydrogen production," Renewable Energy, Elsevier, vol. 226(C).
    5. Li, Yanbing & Zhu, Pengfei & Tsubaki, Noritatsu & Jin, Zhiliang, 2022. "Fabrication of hierarchical CoP/ZnCdS/Co3O4 quantum dots (800>40>4.5 nm) bi-heterostructure cages for efficient photocatalytic hydrogen evolution," Renewable Energy, Elsevier, vol. 198(C), pages 626-636.

    More about this item

    Keywords

    MIL-53(Fe); Fe2P; NiTiO3; Co-catalyst; Hydrogen evolution;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:132-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.