IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp920-932.html
   My bibliography  Save this article

Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development

Author

Listed:
  • Devkota, Laxmi P.
  • Bhattarai, Utsav
  • Khatri, Pawan
  • Marahatta, Suresh
  • Shrestha, Dibesh

Abstract

Fluctuation in hydro-electricity production is primarily attributed to natural and human-induced flow variations. Reduced electricity generation because of unavailability of flow inflicts significant upward pressure on the sources and prices. Despite studies on the impact of externalities on river flow variation, there is a distinct research gap on the responsiveness of hydropower plants to change in flow. This study has introduced a novel concept of flow elasticity of power (ε) to assess the resilience of hydropower projects to flow variation. The theoretical aspect has been established for run-of-river (ROR) and storage-type (ST) cases separately and validated at two projects, one of each type, located in the Budhigandaki Basin in central Nepal. Responsiveness of hydro-projects to the topographical parameters are also dealt with here. For ROR systems, wide-ranging values of ε indicate varying levels of resilience to power generation and loss of resources. For ST projects, the response differs according to emptying, filling and ROR-equivalent phases. Furthermore, strong topographical implications on power production and its elasticity are evident. This concept of ε sets out a significant research contribution in the hydropower sector and demonstrates its possibility of direct application in projects ‘inpriori’ as well as ‘posteriori’ while planning/designing and operating/updating stages, respectively. The ε coefficient scientifically informs the planners and developers on the sensitivity of the powerplants to hydrological variations and topography ultimately benefitting the existing global challenge to minimize the loss of precious resources for sustainable hydropower development.

Suggested Citation

  • Devkota, Laxmi P. & Bhattarai, Utsav & Khatri, Pawan & Marahatta, Suresh & Shrestha, Dibesh, 2022. "Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development," Renewable Energy, Elsevier, vol. 184(C), pages 920-932.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:920-932
    DOI: 10.1016/j.renene.2021.11.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016335
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rohini Devkota & Utsav Bhattarai & Laxmi Devkota & Tek Narayan Maraseni, 2020. "Assessing the past and adapting to future floods: a hydro-social analysis," Climatic Change, Springer, vol. 163(2), pages 1065-1082, November.
    2. Boyoon Chang & Sung Jin Kang & Tae Yong Jung, 2019. "Price and Output Elasticities of Energy Demand for Industrial Sectors in OECD Countries," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    3. Yasunobu Wakashiro, 2019. "Estimating price elasticity of demand for electricity: the case of Japanese manufacturing industry," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 173-191, January.
    4. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    5. Benjamin Volland & Ivan Tilov, 2018. "Price elasticities of electricity demand in Switzerland: Results from a household panel," IRENE Working Papers 18-03, IRENE Institute of Economic Research.
    6. Tatyana Deryugina & Alexander MacKay & Julian Reif, 2020. "The Long-Run Dynamics of Electricity Demand: Evidence from Municipal Aggregation," American Economic Journal: Applied Economics, American Economic Association, vol. 12(1), pages 86-114, January.
    7. Gan‐Ochir Doojav & Kaliappa Kalirajan, 2019. "Income and price elasticities of electricity demand in Australia: Evidence of state‐specific heterogeneity," Australian Economic Papers, Wiley Blackwell, vol. 58(2), pages 194-206, June.
    8. Madhu Khanna & Narasimha D. Rao, 2009. "Supply and Demand of Electricity in the Developing World," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 567-596, September.
    9. Paul J. Burke & Ashani Abayasekara, 2018. "The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis," The Energy Journal, , vol. 39(2), pages 123-146, March.
    10. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    11. Barrientos, Jorge & Velilla, Esteban & Tobón Orozco, David & Villada, Fernando & López Lezama, Jesús M., 2018. "On the estimation of the price elasticity of electricity demand in the manufacturing industry of Colombia," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 88, pages 155-182, January.
    12. Julian David Hunt & Giacomo Falchetta & Behnam Zakeri & Andreas Nascimento & Paulo Smith Schneider & Natália Assis Brasil Weber & André Luiz Amarante Mesquita & Paulo Sergio Franco Barbosa & Nivalde J, 2020. "Hydropower impact on the river flow of a humid regional climate," Climatic Change, Springer, vol. 163(1), pages 379-393, November.
    13. Saha, Debalina & Bhattacharya, Rabindra N., 2018. "An analysis of elasticity of electricity demand in West Bengal, India: Some policy lessons learnt," Energy Policy, Elsevier, vol. 114(C), pages 591-597.
    14. Kougias, Ioannis & Szabó, Sándor, 2017. "Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?," Energy, Elsevier, vol. 140(P1), pages 318-329.
    15. Rohini P. Devkota & Vishnu P. Pandey & Utsav Bhattarai & Harshana Shrestha & Shrijwal Adhikari & Khada Nanda Dulal, 2017. "Climate change and adaptation strategies in Budhi Gandaki River Basin, Nepal: a perception-based analysis," Climatic Change, Springer, vol. 140(2), pages 195-208, January.
    16. Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
    17. Pandey, Vishnu Prasad & Dhaubanjar, Sanita & Bharati, Luna & Thapa, Bhesh Raj, 2020. "Spatio-temporal distribution of water availability in Karnali-Mohana Basin, western Nepal: climate change impact assessment (Part-B)," Papers published in Journals (Open Access), International Water Management Institute, pages 1-29:100691.
    18. Tiwari, Aviral Kumar & Menegaki, Angeliki N., 2019. "A time varying approach on the price elasticity of electricity in India during 1975–2013," Energy, Elsevier, vol. 183(C), pages 385-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Heng & Zhang, Shenxi & Cheng, Haozhong & Li, Zheng & Gu, Qingfa & Tian, Xueqin, 2022. "Boosting the power grid resilience under typhoon disasters by coordinated scheduling of wind energy and conventional generators," Renewable Energy, Elsevier, vol. 200(C), pages 303-319.
    2. Bhattarai, Utsav & Maraseni, Tek & Apan, Armando & Devkota, Laxmi Prasad, 2023. "Rationalizing donations and subsidies: Energy ecosystem development for sustainable renewable energy transition in Nepal," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    2. Lorraine Conway & David Prentice, 2020. "How Much do Households Respond to Electricity Prices? Evidence from Australia and Abroad," Economic Papers, The Economic Society of Australia, vol. 39(3), pages 290-311, September.
    3. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
    4. Agustin J. Ros, 2020. "Does electricity competition work for residential consumers? Evidence from demand models for default and competitive residential electricity services," Journal of Regulatory Economics, Springer, vol. 58(1), pages 1-32, August.
    5. Brantley Liddle & Fakhri Hasanov, 2022. "Industry electricity price and output elasticities for high-income and middle-income countries," Empirical Economics, Springer, vol. 62(3), pages 1293-1319, March.
    6. Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
    7. Y.-H. Henry Chen & John M Reilly & Sergey Paltsev, 2021. "The role of shale gas in shaping the U.S. long-run CO2 emissions," Energy & Environment, , vol. 32(4), pages 737-755, June.
    8. Alex Perez & Jaime Carabali & Luis Meneses, 2022. "Pass-through in Colombia s Unregulated Retail Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 575-583, July.
    9. Yang, Yuting, 2020. "Electricity Interconnection with Intermittent Renewables," TSE Working Papers 20-1075, Toulouse School of Economics (TSE).
    10. Gautam, Tej K. & Paudel, Krishna P., 2018. "Estimating sectoral demands for electricity using the pooled mean group method," Applied Energy, Elsevier, vol. 231(C), pages 54-67.
    11. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    12. Burke, Paul J. & Kurniawati, Sandra, 2018. "Electricity subsidy reform in Indonesia: Demand-side effects on electricity use," Energy Policy, Elsevier, vol. 116(C), pages 410-421.
    13. Uddin, Gazi Salah & Hasan, Md. Bokhtiar & Phoumin, Han & Taghizadeh-Hesary, Farhad & Ahmed, Ali & Troster, Victor, 2023. "Exploring the critical demand drivers of electricity consumption in Thailand," Energy Economics, Elsevier, vol. 125(C).
    14. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    15. Chen, Yu-Fu & Mu, Xiaoyi, 2021. "Asymmetric volatility in commodity markets," Journal of Commodity Markets, Elsevier, vol. 22(C).
    16. Bekithemba Qeqe & Forget Kapingura & Bahle Mgxekwa, 2022. "The Relationship between Electricity Prices and Household Welfare in South Africa," Energies, MDPI, vol. 15(20), pages 1-15, October.
    17. Kałuża, Tomasz & Hämmerling, Mateusz & Zawadzki, Paweł & Czekała, Wojciech & Kasperek, Robert & Sojka, Mariusz & Mokwa, Marian & Ptak, Mariusz & Szkudlarek, Arkadiusz & Czechlowski, Mirosław & Dach, J, 2022. "The hydropower sector in Poland: Barriers and the outlook for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    18. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Li, Raymond & Woo, Chi-Keung & Cox, Kevin, 2021. "How price-responsive is residential retail electricity demand in the US?," Energy, Elsevier, vol. 232(C).
    20. Hindriks, Jean & Serse, Valerio, 2022. "The incidence of VAT reforms in electricity markets: Evidence from Belgium," International Journal of Industrial Organization, Elsevier, vol. 80(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:920-932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.