IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v173y2021icp57-75.html
   My bibliography  Save this article

REVUB-Light: A parsimonious model to assess power system balancing and flexibility for optimal intermittent renewable energy integration – A study of Suriname

Author

Listed:
  • Donk, Peter
  • Sterl, Sebastian
  • Thiery, Wim
  • Willems, Patrick

Abstract

A new model, REVUB-Light, an extended modelling approach for the recently developed “Renewable Energy Variability Upscaling and Balancing” (REVUB) model, is highlighted in this study for its relatively simple and effective parameterization for power balance optimization simulations, considering high Intermittent Renewable Energy integration. We demonstrate the effective use of the REVUB-Light model, considering a study for Suriname. The results for different cases are compared to those of the REVUB model, previously used for similar assessments for Suriname. Following distinct optimization procedures, our results confirm the REVUB model findings, i.e., a highly complementary role for wind energy, with up to 20–30% feed-in potential, based on the assumed (currently most probable) hydrological and wind regimes. The REVUB-Light model is validated based on actual operational data, enabling assessments of the potential real world response, and the benefits of flexible (optimized) operational regimes, underlining its potential for renewable energy modelling. It is further shown that Suriname has potential for (near) 100% renewable energy supply, for the mid-term horizon (2030), if additional hydropower potential is developed in combination with hydro-supported wind energy. Overall, the parsimonious approach of REVUB-Light proves to be a reliable modelling tool, and facilitates general usability by “non-experts” such as policymakers.

Suggested Citation

  • Donk, Peter & Sterl, Sebastian & Thiery, Wim & Willems, Patrick, 2021. "REVUB-Light: A parsimonious model to assess power system balancing and flexibility for optimal intermittent renewable energy integration – A study of Suriname," Renewable Energy, Elsevier, vol. 173(C), pages 57-75.
  • Handle: RePEc:eee:renene:v:173:y:2021:i:c:p:57-75
    DOI: 10.1016/j.renene.2021.03.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    3. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    4. Hevia-Koch, Pablo & Klinge Jacobsen, Henrik, 2019. "Comparing offshore and onshore wind development considering acceptance costs," Energy Policy, Elsevier, vol. 125(C), pages 9-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donk, Peter & Sterl, Sebastian & Thiery, Wim & Willems, Patrick, 2023. "Climate-combined energy modelling approach for power system planning towards optimized integration of renewables under potential climate change - The Small Island Developing State perspective," Energy Policy, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donk, Peter & Sterl, Sebastian & Thiery, Wim & Willems, Patrick, 2023. "Climate-combined energy modelling approach for power system planning towards optimized integration of renewables under potential climate change - The Small Island Developing State perspective," Energy Policy, Elsevier, vol. 177(C).
    2. Sterl, Sebastian & Donk, Peter & Willems, Patrick & Thiery, Wim, 2020. "Turbines of the Caribbean: Decarbonising Suriname's electricity mix through hydro-supported integration of wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    4. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    5. Pacheco, A. & Monteiro, J. & Santos, J. & Sequeira, C. & Nunes, J., 2022. "Energy transition process and community engagement on geographic islands: The case of Culatra Island (Ria Formosa, Portugal)," Renewable Energy, Elsevier, vol. 184(C), pages 700-711.
    6. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    7. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    8. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    9. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    10. Dawid Augustyn & Martin D. Ulriksen & John D. Sørensen, 2021. "Reliability Updating of Offshore Wind Substructures by Use of Digital Twin Information," Energies, MDPI, vol. 14(18), pages 1-23, September.
    11. Munoz, Francisco D. & Pumarino, Bruno J. & Salas, Ignacio A., 2017. "Aiming low and achieving it: A long-term analysis of a renewable policy in Chile," Energy Economics, Elsevier, vol. 65(C), pages 304-314.
    12. Hyun, Minwoo & Kim, Yeong Jae & Eom, Jiyong, 2020. "Assessing the impact of a demand-resource bidding market on an electricity generation portfolio and the environment," Energy Policy, Elsevier, vol. 147(C).
    13. Lundin, Erik, 2024. "Wind power and the cost of local compensation schemes: A Swedish revenue sharing policy simulation," Energy Economics, Elsevier, vol. 135(C).
    14. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    15. Amjath-Babu, T.S. & Sharma, Bikash & Brouwer, Roy & Rasul, Golam & Wahid, Shahriar M. & Neupane, Nilhari & Bhattarai, Utsav & Sieber, Stefan, 2019. "Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin," Applied Energy, Elsevier, vol. 239(C), pages 494-503.
    16. Debia, Sébastien & Pineau, Pierre-Olivier & Siddiqui, Afzal S., 2021. "Strategic storage use in a hydro-thermal power system with carbon constraints," Energy Economics, Elsevier, vol. 98(C).
    17. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    18. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    19. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Rai, Alan & Konstandatos, Otto, 2022. "Large-scale and rooftop solar generation in the NEM: A tale of two renewables strategies," Energy Economics, Elsevier, vol. 115(C).
    20. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:173:y:2021:i:c:p:57-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.