IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp618-628.html
   My bibliography  Save this article

Experimental analysis of single loop solar heat collector with jet impingement over indented dimples

Author

Listed:
  • Salman, Mohammad
  • Park, Myeong Hyeon
  • Chauhan, Ranchan
  • Kim, Sung Chul

Abstract

An experimental examination was conducted to consider the impact of convective heat transfer and airflow characteristics through an impingement jet solar heat collector (SHC) with indented dimple roughness geometry on the absorber plate. The experimental results included the arc angle (αd) from 30° to 75°, the relative indented roughness pitch (p/Dh) from 0.269 to 0.810, the relative indented roughness height (e/Dh) from 0.016 to 0.0267. The comprehensive performance of SHC was adequately assessed by fluctuating the Reynolds number (Re) from 3000 to 21000. The Nusselt number (Nuct) increases with the increase in Re, as predicted. It is observed that the value of Nuct is a vigorous function of αd. However, the values of Nuct for the indented dimples on the absorber plate are significantly higher than the values for the smooth absorber plate. The maximum value of the combined friction factor (ffct) takes place at an e/Dh of 0.0267, while the minimum value is at 0.016. The experimental outcomes confirm that the maximum thermohydraulic performance (ηct) enhancement value of 2.15 was obtained at αd = 60°, p/Dh = 0.269, and e/Dh = 0.0267 compared to conventional SHC. These experimental values were used to generate the correlations for the Nuct and friction factor ffct as a function of the indented dimpled roughness parameters.

Suggested Citation

  • Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:618-628
    DOI: 10.1016/j.renene.2021.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    2. Abdulrahman H. Alenezi & Abdulrahman Almutairi & Hamad M. Alhajeri & Abdulmajid Addali & Abdelaziz A. A. Gamil, 2018. "Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate," Energies, MDPI, vol. 11(6), pages 1-16, June.
    3. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    4. Anil Kumar & Man-Hoe Kim, 2016. "Thermal Hydraulic Performance in a Solar Air Heater Channel with Multi V-Type Perforated Baffles," Energies, MDPI, vol. 9(7), pages 1-18, July.
    5. Verma, S.K & Prasad, B.N, 2000. "Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters," Renewable Energy, Elsevier, vol. 20(1), pages 19-36.
    6. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    7. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    8. Wazed, M.A. & Nukman, Y. & Islam, M.T., 2010. "Design and fabrication of a cost effective solar air heater for Bangladesh," Applied Energy, Elsevier, vol. 87(10), pages 3030-3036, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elwekeel, Fifi N.M. & E. F. Nasr, Abdel-Atty & I. Radwan, Momen & I.A. Aly, Wael, 2024. "Influence of impingement jet designs on solar air collector performance," Renewable Energy, Elsevier, vol. 221(C).
    2. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    3. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    4. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh kumar & Park, Myeong Hyun & Kim, Sung Chul, 2022. "Utilizing jet impingement on protrusion/dimple heated plate to improve the performance of double pass solar heat collector," Renewable Energy, Elsevier, vol. 181(C), pages 653-665.
    5. Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
    6. Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    2. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    3. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    4. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Lanjewar, Atul & Bhagoria, J.L. & Sarviya, R.M., 2011. "Heat transfer and friction in solar air heater duct with W-shaped rib roughness on absorber plate," Energy, Elsevier, vol. 36(7), pages 4531-4541.
    6. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    7. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    8. Patil, Anil Kumar, 2015. "Heat transfer mechanism and energy efficiency of artificially roughened solar air heaters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 681-689.
    9. Li, Qi & Flamant, Gilles & Yuan, Xigang & Neveu, Pierre & Luo, Lingai, 2011. "Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4855-4875.
    10. Alam, Tabish & Kim, Man-Hoe, 2017. "A critical review on artificial roughness provided in rectangular solar air heater duct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 387-400.
    11. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    12. Kumar, Anil & Kumar, Raj & Maithani, Rajesh & Chauhan, Ranchan & Sethi, Muneesh & Kumari, Anita & Kumar, Sushil & Kumar, Sunil, 2017. "Correlation development for Nusselt number and friction factor of a multiple type V-pattern dimpled obstacles solar air passage," Renewable Energy, Elsevier, vol. 109(C), pages 461-479.
    13. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    14. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    15. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    16. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    17. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    18. Şevik, Seyfi & Özdilli, Özgür & Abuşka, Mesut, 2022. "Experimental investigation of relative roughness height effect in solar air collector with convex dimples," Renewable Energy, Elsevier, vol. 194(C), pages 100-116.
    19. Lanjewar, A.M. & Bhagoria, J.L. & Agrawal, M.K., 2015. "Review of development of artificial roughness in solar air heater and performance evaluation of different orientations for double arc rib roughness," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1214-1223.
    20. Sharma, Sanjay K. & Kalamkar, Vilas R., 2015. "Thermo-hydraulic performance analysis of solar air heaters having artificial roughness–A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 413-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:618-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.