IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp783-791.html
   My bibliography  Save this article

Is pyrolysis bio-oil prone to microbial conversion into added-value products?

Author

Listed:
  • Basaglia, Marina
  • Favaro, Lorenzo
  • Torri, Cristian
  • Casella, Sergio

Abstract

In view of the potential application of pyrolysis-based biotechnologies, it is crucial to look for novel microorganisms able to convert pyrolysis-derived products, in particular bio-oil water-soluble constituent, into valuable compounds. For the first time, this paper proposed a survey on a collection of bacterial, yeast, and fungal strains with well-known industrial properties as well as new bacterial isolates in order to select microbes able to both tolerate bio-oil inhibitors and convert bio-oil into valuable products. This survey found that bio-oil aqueous phase (BOAP) obtained from intermediate pyrolysis could be metabolized as it is by fungal strains whereas several dilutions are needed to do not hamper cell viability of many tested yeast and bacterial isolates.

Suggested Citation

  • Basaglia, Marina & Favaro, Lorenzo & Torri, Cristian & Casella, Sergio, 2021. "Is pyrolysis bio-oil prone to microbial conversion into added-value products?," Renewable Energy, Elsevier, vol. 163(C), pages 783-791.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:783-791
    DOI: 10.1016/j.renene.2020.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. do Carmo Precci Lopes, Alice & Mudadu Silva, Cláudio & Pereira Rosa, André & de Ávila Rodrigues, Fábio, 2018. "Biogas production from thermophilic anaerobic digestion of kraft pulp mill sludge," Renewable Energy, Elsevier, vol. 124(C), pages 40-49.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Torri, Cristian & Pambieri, Giampiero & Gualandi, Chiara & Piraccini, Maurizio & Rombolà, Alessandro G. & Fabbri, Daniele, 2020. "Evaluation of the potential performance of hyphenated pyrolysis-anaerobic digestion (Py-AD) process for carbon negative fuels from woody biomass," Renewable Energy, Elsevier, vol. 148(C), pages 1190-1199.
    4. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    5. Jiang, Li-Qun & Fang, Zhen & Zhao, Zeng-Li & Zheng, An-Qing & Wang, Xiao-Bo & Li, Hai-Bin, 2019. "Levoglucosan and its hydrolysates via fast pyrolysis of lignocellulose for microbial biofuels: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 215-229.
    6. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    7. Taherzadeh-Ghahfarokhi, Maryam & Panahi, Reza & Mokhtarani, Babak, 2019. "Optimizing the combination of conventional carbonaceous additives of culture media to produce lignocellulose-degrading enzymes by Trichoderma reesei in solid state fermentation of agricultural residue," Renewable Energy, Elsevier, vol. 131(C), pages 946-955.
    8. Shah, A.T. & Favaro, L. & Alibardi, L. & Cagnin, L. & Sandon, A. & Cossu, R. & Casella, S. & Basaglia, M., 2016. "Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste," Applied Energy, Elsevier, vol. 176(C), pages 116-124.
    9. Kucharska, Karolina & Hołowacz, Iwona & Konopacka-Łyskawa, Donata & Rybarczyk, Piotr & Kamiński, Marian, 2018. "Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels," Renewable Energy, Elsevier, vol. 129(PA), pages 384-408.
    10. Karagoz, Pınar & Bill, Roslyn M. & Ozkan, Melek, 2019. "Lignocellulosic ethanol production: Evaluation of new approaches, cell immobilization and reactor configurations," Renewable Energy, Elsevier, vol. 143(C), pages 741-752.
    11. Sindhu, Raveendran & Gnansounou, Edgard & Binod, Parameswaran & Pandey, Ashok, 2016. "Bioconversion of sugarcane crop residue for value added products – An overview," Renewable Energy, Elsevier, vol. 98(C), pages 203-215.
    12. Jacobson, Kathlene & Maheria, Kalpana C. & Kumar Dalai, Ajay, 2013. "Bio-oil valorization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 91-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
    3. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    4. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    5. Mehrdad Massoudi & Ping Wang, 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag," Energies, MDPI, vol. 6(2), pages 1-32, February.
    6. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    7. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    8. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    9. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    10. Bakonyi, Péter & Buitrón, Germán & Valdez-Vazquez, Idania & Nemestóthy, Nándor & Bélafi-Bakó, Katalin, 2017. "A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation," Applied Energy, Elsevier, vol. 190(C), pages 813-823.
    11. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    12. Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
    13. Fan, Yongsheng & Zhao, Weidong & Shao, Shanshan & Cai, Yixi & Chen, Yuwei & Jin, Lizhu, 2018. "Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catalysis (NPSC) system," Energy, Elsevier, vol. 142(C), pages 462-472.
    14. Al-Kassir, A. & Gañán-Gómez, J. & Mohamad, A.A. & Cuerda-Correa, E.M., 2010. "A study of energy production from cork residues: Sawdust, sandpaper dust and triturated wood," Energy, Elsevier, vol. 35(1), pages 382-386.
    15. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    16. Salvilla, John Nikko V. & Ofrasio, Bjorn Ivan G. & Rollon, Analiza P. & Manegdeg, Ferdinand G. & Abarca, Ralf Ruffel M. & de Luna, Mark Daniel G., 2020. "Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production," Applied Energy, Elsevier, vol. 279(C).
    17. Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.
    18. Rios-Del Toro, E. Emilia & Chi, Hetian & González-Álvarez, Víctor & Méndez-Acosta, Hugo O. & Arreola-Vargas, Jorge & Liu, Hao, 2021. "Coupling the biochemical and thermochemical biorefinery platforms to enhance energy and product recovery from Agave tequilana bagasse," Applied Energy, Elsevier, vol. 299(C).
    19. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    20. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:783-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.