IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp230-239.html
   My bibliography  Save this article

Outstanding reinforcement on chain elongation through five-micrometer-sized biochar

Author

Listed:
  • Liu, Yuhao
  • He, Pinjing
  • Han, Wenhao
  • Shao, Liming
  • Lü, Fan

Abstract

The incorporation of biochar in chain elongation was a feasible method to enhance caproate production. But, it is a challenge to choose biochar with appropriate particle sizes. In this study, five particle sizes of biochar were introduced in chain elongation to investigate the difference of application effect. The results showed that biochar smaller than 5 μm significantly enhanced the efficiency of chain elongation. The reaction period could be drastically reduced to 10 days, comparing with the similar studies, in which the period needs to be extended to about 100 days. The selectivity of caproate was up to 93.56% in 31 days with the incorporation of biochar smaller than 5 μm. The cell network structure formed by the biasedly attachment of predominant strains around biochar particle was the key to the enhancement of chain elongation by biochar smaller than 5 μm. The biochar smaller than 5 μm drastically altered the microbial community structure during a short operation period, promoting Methanofollis and Defluviitoga, to be the most predominant genera. The profound enhancement of chain elongation initiated by biochar smaller than 5 μm probably be attributed to higher content of K+ in aqueous solution, electrical conductivity and surface area.

Suggested Citation

  • Liu, Yuhao & He, Pinjing & Han, Wenhao & Shao, Liming & Lü, Fan, 2020. "Outstanding reinforcement on chain elongation through five-micrometer-sized biochar," Renewable Energy, Elsevier, vol. 161(C), pages 230-239.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:230-239
    DOI: 10.1016/j.renene.2020.07.126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312027
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ., 2012. "Electric Power," Chapters, in: Regulatory Reform of Public Utilities, chapter 3, pages 49-64, Edward Elgar Publishing.
    2. Arif, Sania & Liaquat, Rabia & Adil, Manal, 2018. "Applications of materials as additives in anaerobic digestion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 354-366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
    2. Schnack, Alexander & Wright, Malcolm J. & Holdershaw, Judith L., 2021. "Does the locomotion technique matter in an immersive virtual store environment? – Comparing motion-tracked walking and instant teleportation," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
    3. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Rehman, I.H. & Kar, Abhishek & Banerjee, Manjushree & Kumar, Preeth & Shardul, Martand & Mohanty, Jeevan & Hossain, Ijaz, 2012. "Understanding the political economy and key drivers of energy access in addressing national energy access priorities and policies," Energy Policy, Elsevier, vol. 47(S1), pages 27-37.
    6. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    7. Loi, Tian Sheng Allan & Jindal, Gautam, 2019. "Electricity market deregulation in Singapore – Initial assessment of wholesale prices," Energy Policy, Elsevier, vol. 127(C), pages 1-10.
    8. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    9. Qadrdan, Meysam & Chaudry, Modassar & Jenkins, Nick & Baruah, Pranab & Eyre, Nick, 2015. "Impact of transition to a low carbon power system on the GB gas network," Applied Energy, Elsevier, vol. 151(C), pages 1-12.
    10. Geske, Joachim & Green, Richard & Staffell, Iain, 2020. "Elecxit: The cost of bilaterally uncoupling British-EU electricity trade," Energy Economics, Elsevier, vol. 85(C).
    11. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Mohammadifar, M. & Zhang, J. & Yazgan, I. & Sadik, O. & Choi, S., 2018. "Power-on-paper: Origami-inspired fabrication of 3-D microbial fuel cells," Renewable Energy, Elsevier, vol. 118(C), pages 695-700.
    13. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
    14. Kumar, A. Naresh & Dissanayake, Pavani Dulanja & Masek, Ondrej & Priya, Anshu & Ki Lin, Carol Sze & Ok, Yong Sik & Kim, Sang-Hyoun, 2021. "Recent trends in biochar integration with anaerobic fermentation: Win-win strategies in a closed-loop," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Joanna K. Huertas & Lawrence Quipuzco & Amro Hassanein & Stephanie Lansing, 2020. "Comparing Hydrogen Sulfide Removal Efficiency in a Field-Scale Digester Using Microaeration and Iron Filters," Energies, MDPI, vol. 13(18), pages 1-14, September.
    16. Cai, Weiwei & Liu, Wenzong & Sun, Haishu & Li, Jiaqi & Yang, Liming & Liu, Meijun & Zhao, Shenlong & Wang, Aijie, 2018. "Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells," Applied Energy, Elsevier, vol. 209(C), pages 56-64.
    17. An, Qian & Cheng, Jing-Rong & Wang, Yu-Tao & Zhu, Ming-Jun, 2020. "Performance and energy recovery of single and two stage biogas production from paper sludge: Clostridium thermocellum augmentation and microbial community analysis," Renewable Energy, Elsevier, vol. 148(C), pages 214-222.
    18. Ma, Lei & Zhou, Lei & Ruan, Meng-Ya & Gu, Ji-Dong & Mu, Bo-Zhong, 2019. "Simultaneous methanogenesis and acetogenesis from the greenhouse carbon dioxide by an enrichment culture supplemented with zero-valent iron," Renewable Energy, Elsevier, vol. 132(C), pages 861-870.
    19. Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
    20. Bunn, Derek & Yusupov, Tim, 2015. "The progressive inefficiency of replacing renewable obligation certificates with contracts-for-differences in the UK electricity market," Energy Policy, Elsevier, vol. 82(C), pages 298-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:230-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.