IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp560-573.html
   My bibliography  Save this article

Hydrodynamic characteristics and flow structures of pitching hydrofoil with special emphasis on the added force effect

Author

Listed:
  • Zhang, Mengjie
  • Liu, Taotao
  • Huang, Biao
  • Wu, Qin
  • Wang, Guoyu

Abstract

The objective of this paper is to investigate the hydrodynamic characteristics and corresponding flow structures of a pitching Clark-Y hydrofoil with special emphasis on the added force effect. The experiments were performed in the looped cavitation tunnel, and the hydrodynamic characteristics are obtained by the dynamic moment measurement system. The average angle of attack and amplitude of pitching hydrofoil are 10° and 5°, respectively. The whole oscillatory motion is divided into two stages, namely the up stage and down stage. The pitching rate is set with the Reynolds number Re = 4.4 × 105. The incompressible URANS equations are solved by using the coupled k-ω SST turbulence model and γ-Reθ transition model. It can be shown that the numerical results agree well with the experimental measurements. Compared to the static hydrofoil, the lift of the pitching case is higher in the up stage because of the positive added lift. Meanwhile, the center of pressure is closer to the pitching axis. For the down stage, the lift of the pitching case is lower caused by the negative added lift and the pressure center is further away from the pitching axis. The main reason is that the different pitching direction corresponds to specific position of the added lift relative to the pitching axis, causing the pressure center to move in different directions. When the stall happens, the evolution of lift and the pressure center fluctuates due to the shedding vortex structures. Results show that the added force effect on the hydrodynamic force is negligible compared with the contributions from the vorticity within the flow in the stall phase. As the pitching rate increases, the added force effect becomes more significant, thus leading to the higher lift of the up stage and the lower lift of the down stage. Besides, for the stall phase, the dynamic stall angle is delayed for the fast pitching rate, which is due to the generation and development of the counterclockwise trailing edge vortex.

Suggested Citation

  • Zhang, Mengjie & Liu, Taotao & Huang, Biao & Wu, Qin & Wang, Guoyu, 2020. "Hydrodynamic characteristics and flow structures of pitching hydrofoil with special emphasis on the added force effect," Renewable Energy, Elsevier, vol. 157(C), pages 560-573.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:560-573
    DOI: 10.1016/j.renene.2020.05.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307795
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Wenhua & Xu, Guodong & Duan, Wenyang & Song, Zhijie & Lei, Jie, 2019. "Experimental and numerical study of a hydrokinetic turbine based on tandem flapping hydrofoils," Energy, Elsevier, vol. 174(C), pages 375-385.
    2. Li, Deyou & Wang, Hongjie & Qin, Yonglin & Li, Zhenggui & Wei, Xianzhu & Qin, Daqing, 2018. "Mechanism of high amplitude low frequency fluctuations in a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 126(C), pages 668-680.
    3. Ma, Penglei & Wang, Yong & Xie, Yudong & Huo, Zhipu, 2018. "Numerical analysis of a tidal current generator with dual flapping wings," Energy, Elsevier, vol. 155(C), pages 1077-1089.
    4. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    5. Park, Sewan & Park, Sunho & Rhee, Shin Hyung, 2016. "Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 92(C), pages 321-332.
    6. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    7. Teng, Lubao & Deng, Jian & Pan, Dingyi & Shao, Xueming, 2016. "Effects of non-sinusoidal pitching motion on energy extraction performance of a semi-active flapping foil," Renewable Energy, Elsevier, vol. 85(C), pages 810-818.
    8. Uihlein, Andreas & Magagna, Davide, 2016. "Wave and tidal current energy – A review of the current state of research beyond technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1070-1081.
    9. Yu, An & Zou, Zhipeng & Zhou, Daqing & Zheng, Yuan & Luo, Xianwu, 2020. "Investigation of the correlation mechanism between cavitation rope behavior and pressure fluctuations in a hydraulic turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1199-1208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mengjie & Huang, Biao & Wu, Qin & Zhang, Mindi & Wang, Guoyu, 2020. "The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil," Renewable Energy, Elsevier, vol. 161(C), pages 1276-1291.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Mengjie & Huang, Biao & Wu, Qin & Zhang, Mindi & Wang, Guoyu, 2020. "The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil," Renewable Energy, Elsevier, vol. 161(C), pages 1276-1291.
    2. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    3. Deng, Jian & Wang, Shuhong & Kandel, Prabal & Teng, Lubao, 2022. "Effects of free surface on a flapping-foil based ocean current energy extractor," Renewable Energy, Elsevier, vol. 181(C), pages 933-944.
    4. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    5. Ma, Penglei & Liu, Guijie & Wang, Honghui & Wang, Yong & Xie, Yudong, 2021. "Co-simulations of a semi-passive oscillating foil turbine using a hydraulic system," Energy, Elsevier, vol. 217(C).
    6. Zhang, Yubing & Wang, Qixian & Han, Jiazhen & Xie, Yudong, 2023. "Effects of unsteady stream on hydrodynamic behavior of flexible hydrofoil in semi-passive mode," Renewable Energy, Elsevier, vol. 206(C), pages 451-465.
    7. Sun, Guang & Wang, Yong & Xie, Yudong & Lv, Kai & Sheng, Ruoyu, 2021. "Research on the effect of a movable gurney flap on energy extraction of oscillating hydrofoil," Energy, Elsevier, vol. 225(C).
    8. Liu, Zhen & Qu, Hengliang & Zhang, Guoliang, 2020. "Experimental and numerical investigations of a coupled-pitching hydrofoil under the fully-activated mode," Renewable Energy, Elsevier, vol. 155(C), pages 432-446.
    9. Zhang, Yubing & Wang, Yong & Xie, Yudong & Sun, Guang & Han, Jiazhen, 2022. "Effects of flexibility on energy extraction performance of an oscillating hydrofoil under a semi-activated mode," Energy, Elsevier, vol. 242(C).
    10. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    11. Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Zhang, Yidan & Shek, Jonathan K.H. & Mueller, Markus A., 2023. "Controller design for a tidal turbine array, considering both power and loads aspects," Renewable Energy, Elsevier, vol. 216(C).
    13. Kaufmann, Nicholas & Carolus, Thomas & Starzmann, Ralf, 2019. "Turbines for modular tidal current energy converters," Renewable Energy, Elsevier, vol. 142(C), pages 451-460.
    14. Zhu, Bing & Huang, Yun & Zhang, Yongming, 2018. "Energy harvesting properties of a flapping wing with an adaptive Gurney flap," Energy, Elsevier, vol. 152(C), pages 119-128.
    15. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    16. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    17. Zhu, Jianyang & Zhu, Mingkang & Zhang, Tao & Zhao, Hui & Wang, Chao, 2021. "Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil," Energy, Elsevier, vol. 227(C).
    18. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.
    19. López, A. & Morán, J.L. & Núñez, L.R. & Somolinos, J.A., 2020. "Study of a cost model of tidal energy farms in early design phases with parametrization and numerical values. Application to a second-generation device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    20. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:560-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.