IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp213-219.html
   My bibliography  Save this article

Effects of clay and temperature on the slag formation of two biomass fuels: Wood from Acacia mangium and rhizome residual from Manihot esculenta

Author

Listed:
  • Kanoksilapatham, Wirojne
  • Ogawa, Makoto
  • Intagun, Weeranut

Abstract

Thermal energy generation from biomass fuels usually leads to dense slag accumulation, causing combustion system problems. This study tested a type of local clay as a slag soothing additive on two biomass fuels: Acacia mangium (kratin-tree) and Manihot esculenta (cassava). Physical characteristics of the slags were studied. In addition, a laboratory method for determination of ash sintering was modified to assay the dense and loose slag accumulation. Compositions of the clay and biomasses were determined. While the clay contains high relative contents of Si (42.3%) and Al (24.5%), the cassava rhizome and kratin-wood contain high relative contents of K (46.8% and 47.2%) and Cl (10.8% and 7.54%), respectively. Gas phase transition of residual ashes was revealed as a result of slag inducing combustion treatments. Addition of the clay (0–5%) decreased the total slag accumulation, and the maximum effect was revealed at 3–5% clay. The modified method in this study requires a small amount of ash sample which is practical and convenient for laboratory testing of slag behavior.

Suggested Citation

  • Kanoksilapatham, Wirojne & Ogawa, Makoto & Intagun, Weeranut, 2020. "Effects of clay and temperature on the slag formation of two biomass fuels: Wood from Acacia mangium and rhizome residual from Manihot esculenta," Renewable Energy, Elsevier, vol. 156(C), pages 213-219.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:213-219
    DOI: 10.1016/j.renene.2020.04.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120306194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian K. James & Ronald W. Thring & Steve Helle & Harpuneet S. Ghuman, 2012. "Ash Management Review—Applications of Biomass Bottom Ash," Energies, MDPI, vol. 5(10), pages 1-18, October.
    2. Wei, Maogui & Zhu, Wanbin & Xie, Guanghui & Lestander, Torbjörn A. & Xiong, Shaojun, 2015. "Cassava stem wastes as potential feedstock for fuel ethanol production: A basic parameter study," Renewable Energy, Elsevier, vol. 83(C), pages 970-978.
    3. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    4. Hansson, Julia & Berndes, Gran & Johnsson, Filip & Kjrstad, Jan, 2009. "Co-firing biomass with coal for electricity generation--An assessment of the potential in EU27," Energy Policy, Elsevier, vol. 37(4), pages 1444-1455, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    2. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    3. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    4. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    5. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    7. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    8. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    9. Escudero, Marcos & Jiménez, Ángel & González, Celina & López, Ignacio, 2013. "Quantitative analysis of potential power production and environmental benefits of Biomass Integrated Gasification Combined Cycles in the European Union," Energy Policy, Elsevier, vol. 53(C), pages 63-75.
    10. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    12. Klaimi, Rachid & Alnouri, Sabla Y. & Stijepović, Mirko, 2022. "Investigation of seasonal variations and multiple fuel options in a novel tri-generation CSP integrated hybrid energy process," Energy, Elsevier, vol. 261(PB).
    13. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    14. Xinhua Shen & Raghava R. Kommalapati & Ziaul Huque, 2015. "The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    15. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    16. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    17. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    18. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    19. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    20. Kim, D. & Hadigheh, S.A., 2024. "Oxidative pyrolysis of biosolid: Air concentration effects on biochar formation and kinetics," Renewable Energy, Elsevier, vol. 224(C).

    More about this item

    Keywords

    Ash; Biomass; Clay; Fuel; Kaolin; Slag;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:213-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.