IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp36-48.html
   My bibliography  Save this article

Generalized distributed state space model of a CSP plant for simulation and control applications: Single-phase flow validation

Author

Listed:
  • Americano da Costa, Marcus V.
  • Narasimhan, Arunkumar
  • Guillen, Diego
  • Joseph, Babu
  • Goswami, D. Yogi

Abstract

Concentrating solar thermal power plants, also known as CSP plants, can be of different configurations depending on type of collectors, temperatures, heat transfer fluid, working fluid, and the thermodynamic cycle used in the plant. This leads to complex behavior with nonlinear dynamics, potential instability and parameters that vary in both space and time. In this work, a distributed state space model is proposed to ensure computational flexibility and facilitate industrial applications, such as optimization, control and automation. The format used allows the model to represent the thermal dynamics at different operation points including phase changes (liquid or gas) along the spatial dimension. To validate the model, some experimental tests have been made on an operating solar thermal plant located at the University of South Florida, in United States, where real input disturbances were applied to compare measurements with model predictions. Preliminary results show good agreement with experimental observations. Literature data of water and steam properties were used in the model, that can be easily extended to direct steam generation (DSG) plants.

Suggested Citation

  • Americano da Costa, Marcus V. & Narasimhan, Arunkumar & Guillen, Diego & Joseph, Babu & Goswami, D. Yogi, 2020. "Generalized distributed state space model of a CSP plant for simulation and control applications: Single-phase flow validation," Renewable Energy, Elsevier, vol. 153(C), pages 36-48.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:36-48
    DOI: 10.1016/j.renene.2020.01.125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lobón, David H. & Baglietto, Emilio & Valenzuela, Loreto & Zarza, Eduardo, 2014. "Modeling direct steam generation in solar collectors with multiphase CFD," Applied Energy, Elsevier, vol. 113(C), pages 1338-1348.
    2. Karamali, Mohammad & Khodabandeh, Mahdi, 2017. "A distributed solar collector field temperature profile control and estimation using inlet oil temperature and radiation estimates based on Iterative Extended Kalman Filter," Renewable Energy, Elsevier, vol. 101(C), pages 144-155.
    3. Aurousseau, Antoine & Vuillerme, Valéry & Bezian, Jean-Jacques, 2016. "Control systems for direct steam generation in linear concentrating solar power plants – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 611-630.
    4. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    5. Americano da Costa, Marcus V. & Pasamontes, Manuel & Normey-Rico, Julio E. & Guzmán, José L. & Berenguel, Manuel, 2013. "Viability and application of ethanol production coupled with solar cooling," Applied Energy, Elsevier, vol. 102(C), pages 501-509.
    6. del Hoyo Arce, Itzal & Herrero López, Saioa & López Perez, Susana & Rämä, Miika & Klobut, Krzysztof & Febres, Jesus A., 2018. "Models for fast modelling of district heating and cooling networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1863-1873.
    7. Roldán, M.I. & Valenzuela, L. & Zarza, E., 2013. "Thermal analysis of solar receiver pipes with superheated steam," Applied Energy, Elsevier, vol. 103(C), pages 73-84.
    8. Antonelli, M. & Baccioli, A. & Francesconi, M. & Desideri, U., 2016. "Dynamic modelling of a low-concentration solar power plant: A control strategy to improve flexibility," Renewable Energy, Elsevier, vol. 95(C), pages 574-585.
    9. Buzás, J. & Kicsiny, R., 2014. "Transfer functions of solar collectors for dynamical analysis and control design," Renewable Energy, Elsevier, vol. 68(C), pages 146-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil, Juan D. & Topa, A. & Álvarez, J.D. & Torres, J.L. & Pérez, M., 2022. "A review from design to control of solar systems for supplying heat in industrial process applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Pataro, Igor M.L. & Gil, Juan D. & Americano da Costa, Marcus V. & Guzmán, José L. & Berenguel, Manuel, 2022. "A nonlinear control approach for hybrid solar thermal plants based on operational conditions," Renewable Energy, Elsevier, vol. 183(C), pages 114-129.
    3. Li, Lu & Li, Yinshi & Yu, Huajie & He, Ya-Ling, 2020. "A feedforward-feedback hybrid control strategy towards ordered utilization of concentrating solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 305-315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    2. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    3. Huang, Zhen & Li, Zeng-Yao & Tao, Wen-Quan, 2017. "Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux," Applied Energy, Elsevier, vol. 185(P2), pages 2194-2208.
    4. Biencinto, Mario & González, Lourdes & Valenzuela, Loreto, 2016. "A quasi-dynamic simulation model for direct steam generation in parabolic troughs using TRNSYS," Applied Energy, Elsevier, vol. 161(C), pages 133-142.
    5. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    6. Serrano-Aguilera, J.J. & Valenzuela, L. & Parras, L., 2014. "Thermal 3D model for Direct Solar Steam Generation under superheated conditions," Applied Energy, Elsevier, vol. 132(C), pages 370-382.
    7. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.
    8. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    9. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    10. Xu, Rong & Wiesner, Theodore F., 2015. "Closed-form modeling of direct steam generation in a parabolic trough solar receiver," Energy, Elsevier, vol. 79(C), pages 163-176.
    11. Hachicha, Ahmed Amine & Rodríguez, Ivette & Ghenai, Chaouki, 2018. "Thermo-hydraulic analysis and numerical simulation of a parabolic trough solar collector for direct steam generation," Applied Energy, Elsevier, vol. 214(C), pages 152-165.
    12. Soares, João & Oliveira, Armando C. & Valenzuela, Loreto, 2021. "A dynamic model for once-through direct steam generation in linear focus solar collectors," Renewable Energy, Elsevier, vol. 163(C), pages 246-261.
    13. Sandá, Antonio & Moya, Sara L. & Valenzuela, Loreto, 2019. "Modelling and simulation tools for direct steam generation in parabolic-trough solar collectors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    14. Li, Zeng-Yao & Huang, Zhen & Tao, Wen-Quan, 2016. "Three-dimensional numerical study on fully-developed mixed laminar convection in parabolic trough solar receiver tube," Energy, Elsevier, vol. 113(C), pages 1288-1303.
    15. Burin, Eduardo Konrad & Vogel, Tobias & Multhaupt, Sven & Thelen, Andre & Oeljeklaus, Gerd & Görner, Klaus & Bazzo, Edson, 2016. "Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant," Energy, Elsevier, vol. 117(P2), pages 416-428.
    16. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    17. Ma, Ruihua & Ma, Dongyan & Ma, Ruijiang & Long, Enshen, 2022. "Theoretical and experimental analysis of temperature variation of V–Ti black ceramic solar collector," Renewable Energy, Elsevier, vol. 194(C), pages 1153-1162.
    18. Abrosimov, Kirill & Baccioli, Andrea & Bischi, Aldo, 2020. "Extensive techno-economic assessment of combined inverted Brayton – Organic Rankine cycle for high-temperature waste heat recovery," Energy, Elsevier, vol. 211(C).
    19. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    20. Cioccolanti, Luca & Tascioni, Roberto & Arteconi, Alessia, 2018. "Mathematical modelling of operation modes and performance evaluation of an innovative small-scale concentrated solar organic Rankine cycle plant," Applied Energy, Elsevier, vol. 221(C), pages 464-476.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:36-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.