IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v153y2020icp1488-1503.html
   My bibliography  Save this article

A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments

Author

Listed:
  • Abdollahipour, Abolfazl
  • Fatehi Marji, Mohammad

Abstract

Geothermal reservoirs, oil wells, radioactive waste disposals, and deep underground mines deal with high-temperature and high-pressure problems. The thermo-hydromechanical coupling may significantly affect the behavior of the rock mass in these applications. Fractures and joints are the main conduits of thermal and hydraulic transition. The displacement discontinuity method (DDM) is ideally suited to model problems containing fractures. However, the DDM in its original formulation is restricted to elasticity problems. It is formulated in this study to take into account the thermo-hydromechanical effects. A numerical formulation and implementation for the thermo-hydromechanical DDM is derived. The proposed numerical model is validated in three parts. The poroelastic, thermoelastic, and thermo-hydromechanical couplings are each validated by analytical or experimental results. The results showed good agreement between the proposed numerical model and analytical or experimental results over various periods. The validations proved the accuracy and applicability of the proposed thermo-hydromechanical numerical model in a wide range of problems. Furthermore, the thermo-hydromechanical effect on crack opening displacement (COD) is modeled. Numerical simulation showed that the maximum COD due to only thermal effects may be reached after almost a year.

Suggested Citation

  • Abdollahipour, Abolfazl & Fatehi Marji, Mohammad, 2020. "A thermo-hydromechanical displacement discontinuity method to model fractures in high-pressure, high-temperature environments," Renewable Energy, Elsevier, vol. 153(C), pages 1488-1503.
  • Handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1488-1503
    DOI: 10.1016/j.renene.2020.02.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120303050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.02.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Sanbai & Feng, Xia-Ting & Zhang, Dongxiao & Tang, Huiying, 2019. "Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs," Applied Energy, Elsevier, vol. 247(C), pages 40-59.
    2. Hofmann, Hannes & Babadagli, Tayfun & Zimmermann, Günter, 2014. "Hot water generation for oil sands processing from enhanced geothermal systems: Process simulation for different hydraulic fracturing scenarios," Applied Energy, Elsevier, vol. 113(C), pages 524-547.
    3. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Xie & Gao Li & Xu Yang & Hongli Peng, 2023. "Evaluating the Degree of Tectonic Fracture Development in the Fourth Member of the Leikoupo Formation in Pengzhou, Western Sichuan, China," Energies, MDPI, vol. 16(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    2. Yu, Likui & Wu, Xiaotian & Hassan, N.M.S. & Wang, Yadan & Ma, Weiwu & Liu, Gang, 2020. "Modified zipper fracturing in enhanced geothermal system reservoir and heat extraction optimization via orthogonal design," Renewable Energy, Elsevier, vol. 161(C), pages 373-385.
    3. Zhang, Jie & Xie, Jingxuan, 2020. "Effect of reservoir’s permeability and porosity on the performance of cellular development model for enhanced geothermal system," Renewable Energy, Elsevier, vol. 148(C), pages 824-838.
    4. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Zhang, Yuanxin, 2024. "Study of fracture monitoring and heat extraction evaluation in geothermal reservoir modified by abandoned well pattern: Numerical models and case studies," Energy, Elsevier, vol. 296(C).
    5. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    6. Xiang Gao & Tailu Li & Yao Zhang & Xiangfei Kong & Nan Meng, 2022. "A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System," Energies, MDPI, vol. 15(19), pages 1-23, September.
    7. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    8. Heinze, Thomas, 2021. "Constraining the heat transfer coefficient of rock fractures," Renewable Energy, Elsevier, vol. 177(C), pages 433-447.
    9. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    10. Yang, Fujian & Wang, Guiling & Hu, Dawei & Liu, Yanguang & Zhou, Hui & Tan, Xianfeng, 2021. "Calibrations of thermo-hydro-mechanical coupling parameters for heating and water-cooling treated granite," Renewable Energy, Elsevier, vol. 168(C), pages 544-558.
    11. Liu, Jun & Zhao, Peng & Peng, Jiao & Xian, Hongyu, 2024. "Insight into the investigation of heat extraction performance affected by natural fractures in enhanced geothermal system (EGS) with THM multiphysical field model," Renewable Energy, Elsevier, vol. 231(C).
    12. Wei, Xin & Feng, Zi-jun & Zhao, Yang-sheng, 2019. "Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 139(C), pages 120-135.
    13. Liao, Jianxing & Xu, Bin & Mehmood, Faisal & Hu, Ke & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Numerical study of the long-term performance of EGS based on discrete fracture network with consideration of fracture deformation," Renewable Energy, Elsevier, vol. 216(C).
    14. Qiu, Lihua & He, Li & Kang, Yu & Liang, Dongzhe, 2022. "Assessment of the potential of enhanced geothermal systems in Asia under the impact of global warming," Renewable Energy, Elsevier, vol. 194(C), pages 636-646.
    15. Xufeng Yan & Kangsheng Xue & Xiaobo Liu & Xiaolou Chi, 2023. "A Novel Numerical Method for Geothermal Reservoirs Embedded with Fracture Networks and Parameter Optimization for Power Generation," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    16. Rui, Zhenhua & Wang, Xiaoqing & Zhang, Zhien & Lu, Jun & Chen, Gang & Zhou, Xiyu & Patil, Shirish, 2018. "A realistic and integrated model for evaluating oil sands development with Steam Assisted Gravity Drainage technology in Canada," Applied Energy, Elsevier, vol. 213(C), pages 76-91.
    17. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    18. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    19. Shu, Biao & Zhu, Runjun & Elsworth, Derek & Dick, Jeffrey & Liu, Shun & Tan, Jingqiang & Zhang, Shaohe, 2020. "Effect of temperature and confining pressure on the evolution of hydraulic and heat transfer properties of geothermal fracture in granite," Applied Energy, Elsevier, vol. 272(C).
    20. Zheng, Shuai & Li, Sanbai & Zhang, Dongxiao, 2021. "Fluid and heat flow in enhanced geothermal systems considering fracture geometrical and topological complexities: An extended embedded discrete fracture model," Renewable Energy, Elsevier, vol. 179(C), pages 163-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:153:y:2020:i:c:p:1488-1503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.