IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp229-236.html
   My bibliography  Save this article

The effect of PBS on methane production in combined MEC-AD system fed with alkaline pretreated sewage sludge

Author

Listed:
  • Xu, Xi-Jun
  • Wang, Wan-Qiong
  • Chen, Chuan
  • Xie, Peng
  • Liu, Wen-Zong
  • Zhou, Xu
  • Wang, Xue-Ting
  • Yuan, Ye
  • Wang, Ai-Jie
  • Lee, Duu-Jong
  • Yuan, Yi-Xing
  • Ren, Nan-Qi

Abstract

Batch experiments were conducted to study bioelectrochemical enhancement of the anaerobic digestion (AD) of alkaline-pretreated sewage sludge in microbial electrolysis cell (MEC) in the presence or absence of phosphate buffer solution (PBS). Experimental results showed that the maximum methane production rate was increased from 0.18 mL-CH4/(mLreactor·d) (control) to 0.2 mL-CH4/(mLreactor·d) in the presence of PBS and cumulative methane production was 1.4-fold higher than that of control. The initial concentrations of SCOD, protein, polysaccharide and VFAs in the presence of PBS were slightly higher than those of control, suggesting that PBS might facilitate the release of organics into mixed liquor. The microbial community analysis results showed that the microbial community with PBS had higher diversity and Bacteroidetes and Firmicutes were the two most abundant phyla in the communities. Moreover, the PBS addition could enhance the growth of aceticlastic methanogens (Methanosaeta) and inhibit a portion of hydrogenotrophic methanogens (Methanobacterium), possibly due to the different cell wall composition.

Suggested Citation

  • Xu, Xi-Jun & Wang, Wan-Qiong & Chen, Chuan & Xie, Peng & Liu, Wen-Zong & Zhou, Xu & Wang, Xue-Ting & Yuan, Ye & Wang, Ai-Jie & Lee, Duu-Jong & Yuan, Yi-Xing & Ren, Nan-Qi, 2020. "The effect of PBS on methane production in combined MEC-AD system fed with alkaline pretreated sewage sludge," Renewable Energy, Elsevier, vol. 152(C), pages 229-236.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:229-236
    DOI: 10.1016/j.renene.2020.01.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120300574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wenzong & Cai, Weiwei & Guo, Zechong & Wang, Ling & Yang, Chunxue & Varrone, Cristiano & Wang, Aijie, 2016. "Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production," Renewable Energy, Elsevier, vol. 91(C), pages 334-339.
    2. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    3. Xiao, Benyi & Chen, Xia & Han, Yunping & Liu, Junxin & Guo, Xuesong, 2018. "Bioelectrochemical enhancement of the anaerobic digestion of thermal-alkaline pretreated sludge in microbial electrolysis cells," Renewable Energy, Elsevier, vol. 115(C), pages 1177-1183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    2. Shabib, Ahmad & Abdallah, Mohamed & Shanableh, Abdallah & Sartaj, Majid, 2022. "Effect of substrates and voltages on the performance of bio-electrochemical anaerobic digestion," Renewable Energy, Elsevier, vol. 198(C), pages 16-27.
    3. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    4. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    5. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    6. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    8. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Li, Xinxin & Tong, Jingjing & Yuan, Maomao & Song, Mei & Gao, Jingsi & Zhu, Jia & Liu, Yanping, 2023. "Demonstrating the application of batch anaerobic digestion recirculating slurry inoculation of food waste engineering from a microbiological perspective," Renewable Energy, Elsevier, vol. 217(C).
    10. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    11. Arthur Chevalier & Philippe Evon & Florian Monlau & Virginie Vandenbossche & Cecilia Sambusiti, 2023. "Twin-Screw Extrusion Mechanical Pretreatment for Enhancing Biomethane Production from Agro-Industrial, Agricultural and Catch Crop Biomasses," Waste, MDPI, vol. 1(2), pages 1-18, May.
    12. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Yu, Qilin & Mao, Haohao & Zhao, Zhiqiang & Zhang, Yaobin, 2023. "Electro-polarization of the sludge with dynamic magnetic field enhanced the interspecies electron transfer in ZVI-added anaerobic digesters," Renewable Energy, Elsevier, vol. 215(C).
    14. Prajapati, Kalp Bhusan & Singh, Rajesh, 2020. "Enhancement of biogas production in bio-electrochemical digester from agricultural waste mixed with wastewater," Renewable Energy, Elsevier, vol. 146(C), pages 460-468.
    15. Cerrillo, Míriam & Viñas, Marc & Bonmatí, August, 2018. "Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane," Renewable Energy, Elsevier, vol. 120(C), pages 178-189.
    16. He, Yuting & Li, Qing & Li, Jun & Zhang, Liang & Fu, Qian & Zhu, Xun & Liao, Qiang, 2022. "Magnetic assembling GO/Fe3O4/microbes as hybridized biofilms for enhanced methane production in microbial electrosynthesis," Renewable Energy, Elsevier, vol. 185(C), pages 862-870.
    17. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    19. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    20. Jing Wang & Bing Liu & Feiyong Chen & Yifan Li & Baojian Xu & Ruina Zhang & Rajeev Goel & Mitsuharu Terashima & Hidenari Yasui, 2023. "Enhancing Mesophilic Anaerobic Digestion of Waste-Activated Sludge through Heat Pretreatment and Kinetic Modeling," Sustainability, MDPI, vol. 15(7), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:229-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.