IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v14y1998i1p311-318.html
   My bibliography  Save this article

Solarthermal seawater desalination systems for decentralised use

Author

Listed:
  • Müller-Holst, H.
  • Engelhardt, M.
  • Herve, M.
  • Schölkopf, W.

Abstract

The performance of a pilot solar Multi Effect Humidification (MEH) Desalination system in Fuerteventura, Canary Islands, had been measured and analysed in detail by the ZAE Bayern since 1992. The investigated distillation units showed constant performance over several years without extensive maintanance. However the efforts towards further efficiency improvement by economic means pointed out the need of supplementing the system with a thermal storage tank. The distillation unit being the most expensive part of a desalination system has to be run 24 hours a day in order to be economic. A cost estimation for storage implementation yields the result, that cost reduction for the produced water by more than a half is possible. In April 1997 a desalination system with 24 hour thermal storage was built up in Sfax / Tunisia. The results of a short term measuring campaign at this site are presented here.

Suggested Citation

  • Müller-Holst, H. & Engelhardt, M. & Herve, M. & Schölkopf, W., 1998. "Solarthermal seawater desalination systems for decentralised use," Renewable Energy, Elsevier, vol. 14(1), pages 311-318.
  • Handle: RePEc:eee:renene:v:14:y:1998:i:1:p:311-318
    DOI: 10.1016/S0960-1481(98)00083-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148198000834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(98)00083-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhani, K. & Ben Bacha, H., 2010. "Experimental investigation of a new solar desalination prototype using the humidification dehumidification principle," Renewable Energy, Elsevier, vol. 35(11), pages 2610-2617.
    2. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    3. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    4. Li, Chennan & Goswami, Yogi & Stefanakos, Elias, 2013. "Solar assisted sea water desalination: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 136-163.
    5. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    6. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    7. Benjemaa, F & Houcine, I & Chahbani, M.H, 1999. "Potential of renewable energy development for water desalination in Tunisia," Renewable Energy, Elsevier, vol. 18(3), pages 331-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:14:y:1998:i:1:p:311-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.